HIGH blood pressure/cholesterol/glucose

NOW WHAT?

Let's Make it as

Simple as Possible - but not Simpler

And also remove most of the fear

What Would You Do?

- You are approximately 45 y/o
- You have been diagnosed "properly" with elevated blood pressure
- You have tried non-drug measures for 6 months and still your blood pressure remains elevated

QUESTION

ABOVE What Blood Pressure Would YOU Take A Drug Every Day For The Next 5 Years?

The Overlying Concept

Objectives

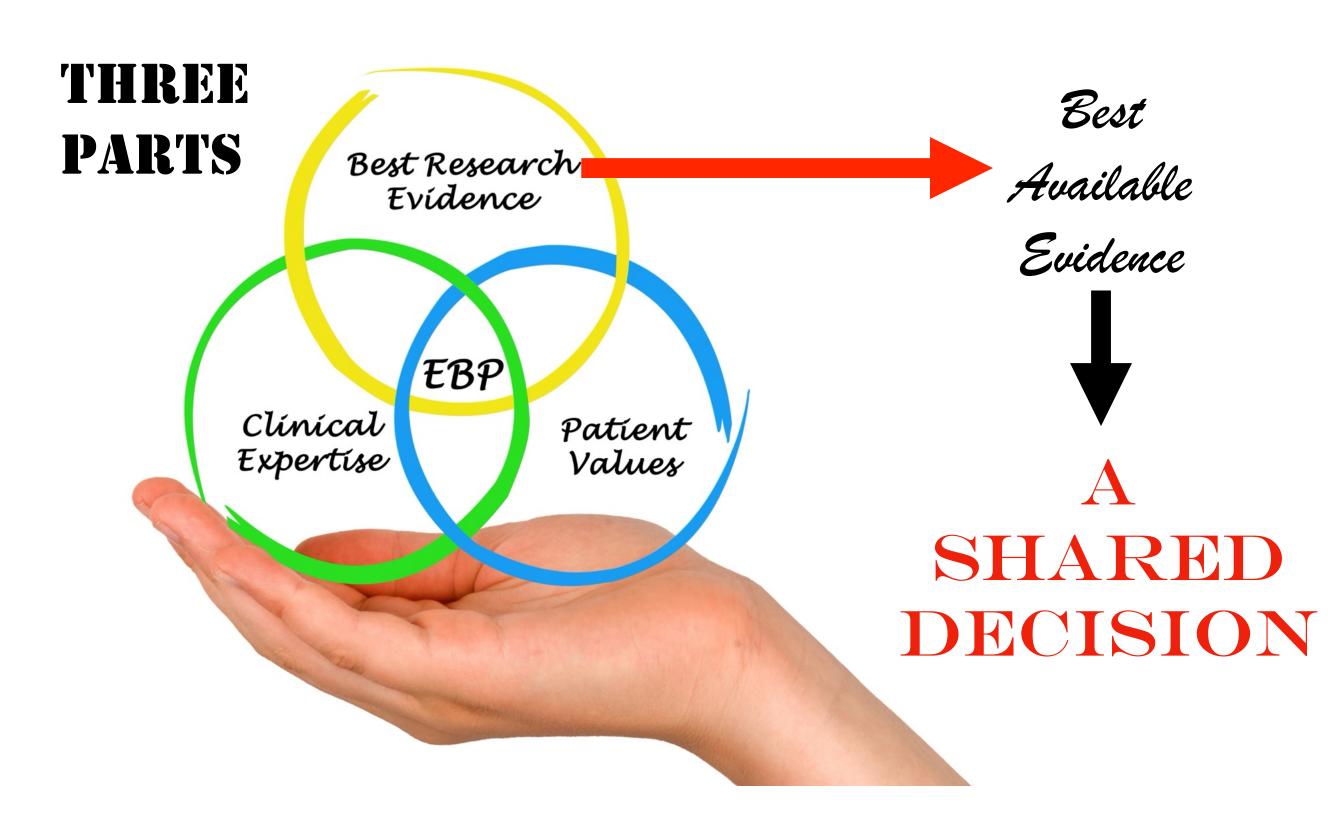
1. Reframe "High" Numbers as Risk Factors, Not Diseases

Explain that high BP, cholesterol, or glucose are risk factors — not diagnoses that demand automatic treatment — and that the decision to start therapy should primarily depend on a patient's absolute risk and preferences.

2. Use Absolute Numbers to Set Realistic Expectations

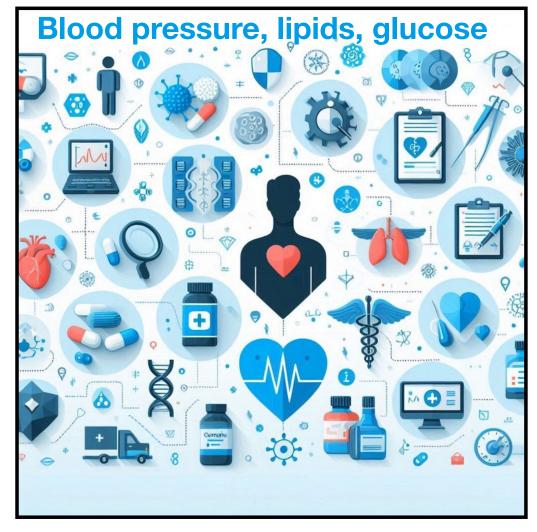
Translate relative risk reductions into absolute risk reductions and NNTs to appreciate the benefit of treatment over 5–10 years.

3. Balance Benefits Against Treatment Burden


Highlight the hidden costs of treatment — daily pills, side effects, lab visits, cost, and worry — and include these burdens when discussing options with patients.

4. Choose Medications Wisely

- Start with low doses
- Prioritize medications proven to reduce clinical events (not just surrogate marker numbers)
- Use generics and pill-splitting where appropriate to lower cost


5. Support True Shared Decision-Making

Present options neutrally, involve patients in choosing between lifestyle changes, medications, or watchful waiting, and document and respect the patient's choice — even if it means "doing less."

Feels Like There Is A Lot To DO

Drugs, Treatments, Testing, Doctor visits, Labs

Feels Like There Is A Lot To Worry About Risk, Worry, Fear, Heart attacks, Strokes, Death, Quality of Life Dealing with blood pressure, lipids (cholesterol) and glucose (diabetes) Can be a LOT simpler than you might think

MY GOAL FOR YOU

GREATER understanding

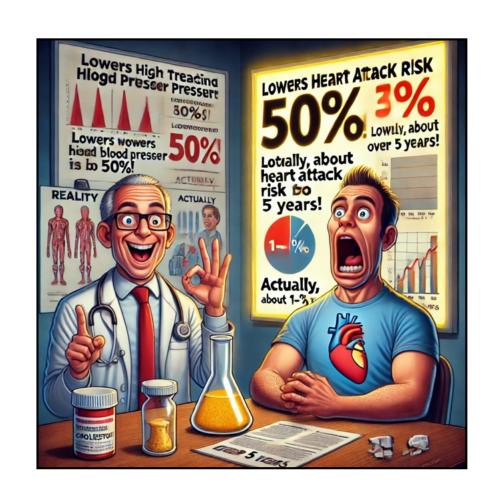
LESS worry

LESS monitoring

LOWER doses

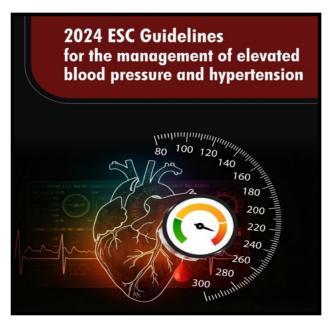
FEWER side effects

LOWER cost

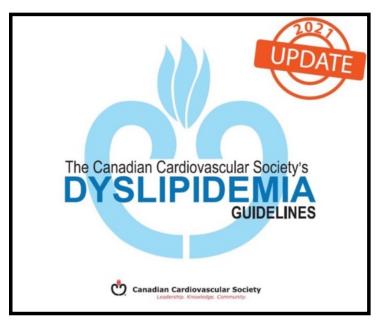

The realization that it's all **YOUR Patient's** decision, **NO ONE ELSE'S**

The BENEFIT of treatment may be quite a bit LESS than what YOU or YOUR patient might think

Patients and clinicians typically overestimate the benefit of treating HIGH blood pressure/cholesterol/glucose


NOT BY JUST A LITTLE BIT - often by more than 10 times the actual benefit

At least 50% of people, if they knew the actual benefit, wouldn't consider taking a medication to treat their HIGH blood pressure/cholesterol/glucose And that probably includes YOU as well



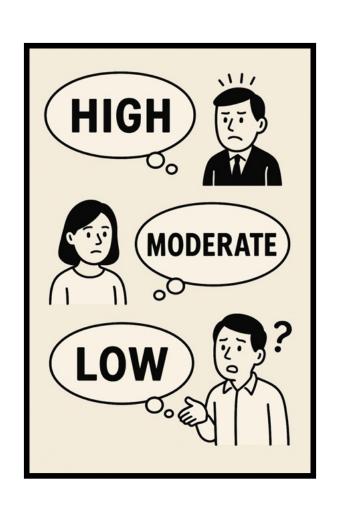
Guidelines Have a Bit of a Problem

BLOOD PRESSURE

LIPIDS

GLUCOSE

They all talk about taking into account patient preferences BUT then say things like...


"medications should be started without delay"

"starting treatment is recommended irrespective of risk"

"recommend treatment initiation for all high or intermediate risk patients"

"immediate drug treatment in all patients"

"Words" are a big part of the problem

'Very High,' 'High', 'Moderate', 'Mild,' and 'Low'

may sound precise,
but in risk communication,
they're more poetry than data—
open to interpretation and prone to
miscommunication

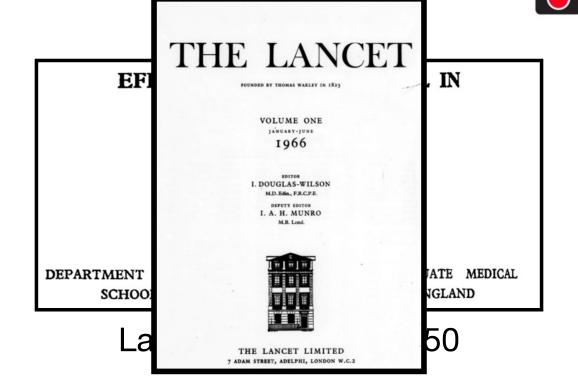
Avoid these words as much as possible

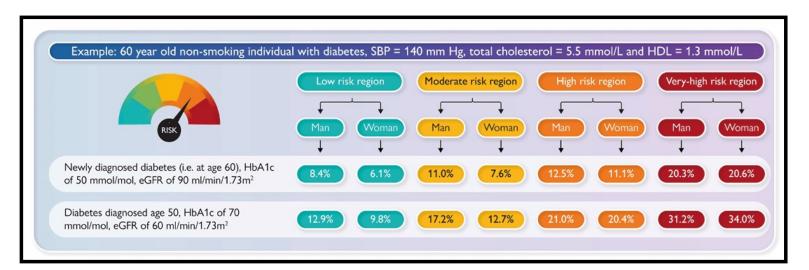
(Unless you always follow up with ballpark numbers)

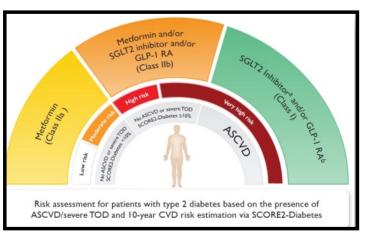
1966

A study which treated people with average blood pressures of

200/110 mmHg







High Low

Intermediate Desirable

Normal Low to moderate

High to very high High Normal

Nearly optimal Moderate

Moderate to high

Borderline high

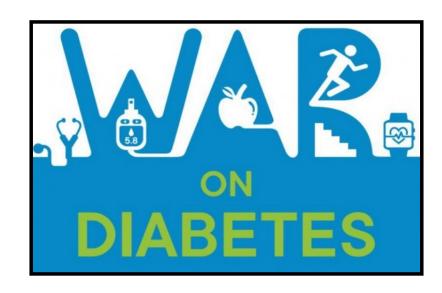
Blood pressure (mmHg) Other risk factors. Grade 1 HT Grade 2 HT Grade 3 HT High normal asymptomatic organ damage SBP 130-139 SBP 140-159 SBP 160-179 SBP ≥180 or disease or DBP ≥110 or DBP 85-89 or DBP 90-99 or DBP 100-109 No other RF Low risk Moderate risk Moderate to 1-2 RF Low risk Moderate risk high risk Moderate to Low to ≥3 RF high risk moderate risk Moderate to High to OD, CKD stage 3 or diabetes high risk very high risk Symptomatic CVD, CKD stage ≥ 4 or Very high risk Very high risk Very high risk Very high risk diabetes with OD/RFs

Optimal

Very high

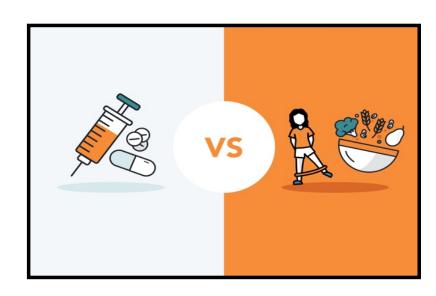
Blood Cholesterol Levels and Heart Disease Risk Total Cholesterol Level Category Less than 200 mg/dL* Desirable 200-239 mg/dL Borderline High 240 mg/dL and above High LDL Cholesterol Level Category Less than 100 mg/dL Optimal (Ideal) 100-129 mg/dL **Nearly Optimal** 130-159 mg/dL Borderline High 160-189 mg/dL High 190 mg/dL and above Very High

PRIMARY PREVENTION†				
Low-Risk* FRS <10%	Intermediate-Risk* FRS 10-19.9% and	High-Risk* FRS ≥20%		
	LDL-C ≥3.5 mmol/L or Non-HDL-C ≥4.2 mmol/L or ApoB ≥1.05 g/L or	Mary Street Mary 1		
	Men ≥50 yrs and women ≥60 yrs with one additional risk factor: low HDL-C, IFG, high waist circumference, smoker, or HTN or with presence of other risk modifiers:			
	hsCRP ≥2.0 mg/L, CAC >0 AU, family history of premature CAD, Lp(a) ≥50 mg/dL (100 nmol/L)			


Words and Hypertension


			*
Guideline Differences	2017/2015 ACC/AHA	2023 ESH	2025 Canada
Hypertension Definition	≥ 130/80	≥ 140/90	≥ 130/80
Optimal		<120/80	
Normal	< 120/80	120-129/80-84	
High normal (used to be prehypertension)		130-139/85-89	
Elevated	120-129/<80		
Stage 1/Grade 1	130-139/80-89	140-159/90-99	
Stage 2/Grade 2	≥ 140/90	160-179/100-109	
Grade 3		≥ 180/110	

Confusing Press Messages



Even ChatGPT @ gets the problem!

A Shared Decision = a decision between a patient and their health care provider

When asked how guidelines discourage a shared-decision

Chat GPT said:

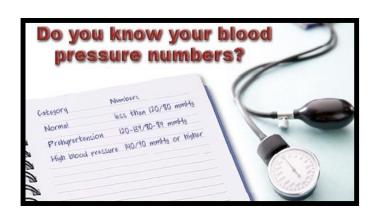
How Guidelines **Discourage**Shared Decision-Making

- Use of Universal Targets (e.g., BP <130/80, LDL <70 mg/dL) as Defaults Without Nuanced Discussion
- Strong Language Like "Should" Instead of "Could,"
 Which Pressures Patients Toward One Path
- Minimal Discussion of Trade-offs, Risks vs. Benefits in Terms That Matter to Patients
- Heavy Focus on Population-Based Data Instead of Individualized Risk Calculators

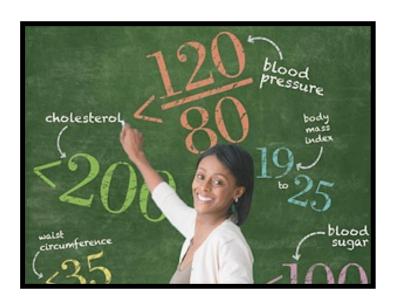
How Guidelines Could **Improve**Shared Decision-Making

- Use Absolute Risk Reduction Data → Let patients see how much a treatment actually benefits them
- Provide Options, Not Directives → Instead of "should take statins," say "you could benefit by X%"
- Acknowledge Individual Values → Some patients may prefer avoiding medications despite minor benefits
- Emphasize Quality of Life Over Strict Targets → Some patients prioritize avoiding side effects over strict control

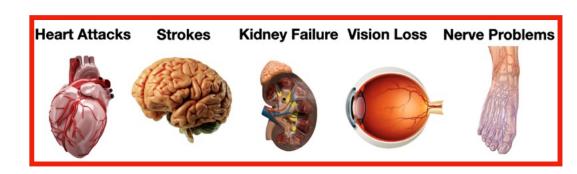
Empowering **YOU** with information that is specific to **YOUR** patient and thereby allowing **THEM** to make a decision



Know THE RISK THE BENEFIT


Make A DECISION

WE ARE
TOLD TO
KNOW
YOUR
NUMBERS!



BUT THERE ARE OTHER NUMBERS THAT ARE MUCH MORE IMPORTANT TO KNOW

The chance of

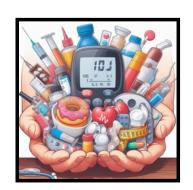
getting these things

LOTS of people are "HIGH"

Roughly*

1 in 4 to 5 - have "high" blood pressure (hypertension)

- 1 in 2 have "pre-hypertension"



1 in 10 to 20 - have "high" glucose (type-2 diabetes)

- 1 in 3 have "pre-diabetes"

^{*}depends somewhat on the country and the definition

34 BLOOD PRESSURE

Hydrochlorothiazide

Chlorthalidone

Indapamide

Furosemide

Spironolactone

Amiloride

Ramipril

Enalapril

Lisinopril

Perindopril

Cilazapril

Losartan

Valsartan

Candesartan

Irbesartan

Telmisartan

Amlodipine

Nifedipine

Felodipine

Diltiazem

Dilliazein

Verapamil

Metoprolol

Atenolol

Bisoprolol

Propranolol

Carvedilol

Doxazosin

Prazosin

Terazosin

Clonidine

Methyldopa

Aliskiren

Allokiron

Hydralazine

Minoxidil

27 DIABETES

Metformin

Glyburide

Glipizide

Glimepiride

Repaglinide

Nateglinide

Pioglitazone

Rosiglitazone

Sitagliptin

Saxagliptin

Linagliptin

Alogliptin

Liraglutide

Exenatide

Dulaglutide

Semaglutide

Canagliflozin

Dapagliflozin

Empagliflozin

Acarbose

Miglitol
Insulin lispro

Insulin aspart

Regular insulin

NPH insulin

Insulin glargine

Insulin detemir

19 LIPIDS

Atorvastatin

Rosuvastatin

Simvastatin

Pravastatin

Lovastatin

Fluvastatin

Pitavastatin

Ezetimibe Cholestyramine

Colestipol

Colesevelam

Alirocumab

Evolocumab

Fenofibrate

Gemfibrozil

Niacin

Eicosapentaenoic

acid (EPA)

Docosahexaenoic

acid (DHA)

Bempedoic acid

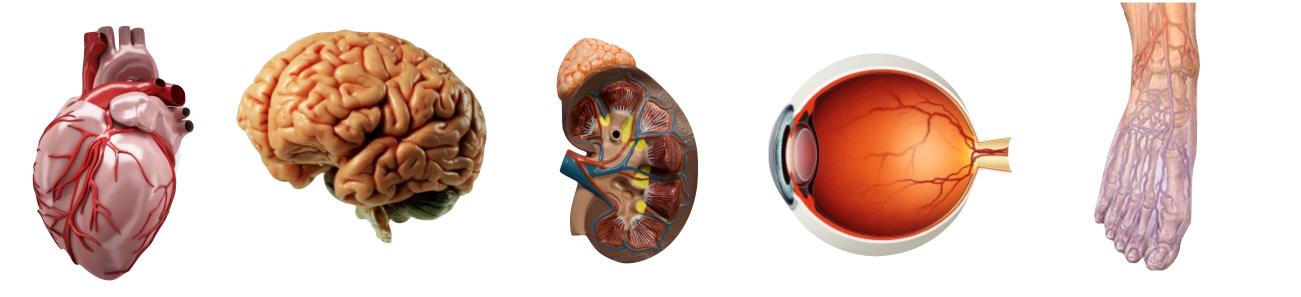
There are over 80+ medications

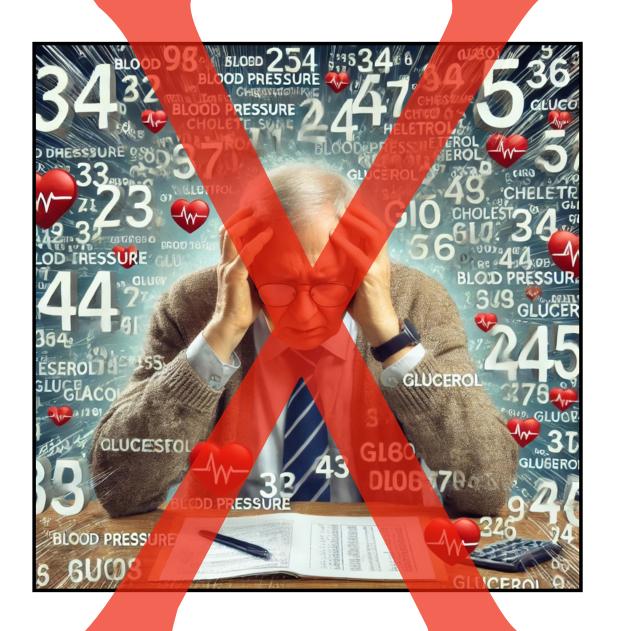
(and many other combination products)

used for blood pressure lipids diabetes

At least 15 of these medications have decent evidence they provide

no benefit on important outcomes





What is KEY to know is, what happens to the chance of these bad outcomes...

Heart Attacks Strokes Kidney Failure Vision Loss Nerve Problems

... and if we treat blood pressure/cholesterol/glucose numbers with medications then, what is the risk?

The Chance of Getting Problems With These

THESE ARE THE NUMBERS YOU NEED TO KNOW ABOUT

Risk Factors

Blood pressure, lipid, and glucose numbers are simply

a measure of 3 Risk Factors

Some call these conditions chronic diseases - but this is misleading

RISKS - death/heart attacks/strokes/kidney problems

Do Not Scare → INFORM

Risk Factor(s)

How much do they impact the risk of a bad outcome such as a heart attack or stroke?

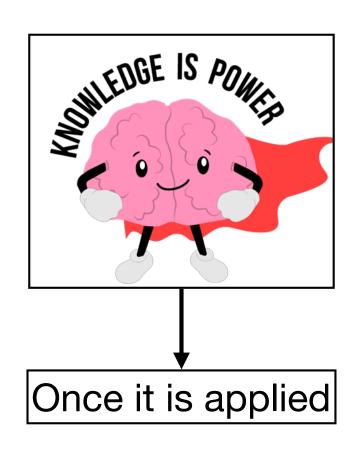
How much would treatment **↓** the risk?

What are the harms and costs?

The ultimate decision is up to YOUR patient, and YOU should support an informed decision!

Helping your patient better understand their health issues

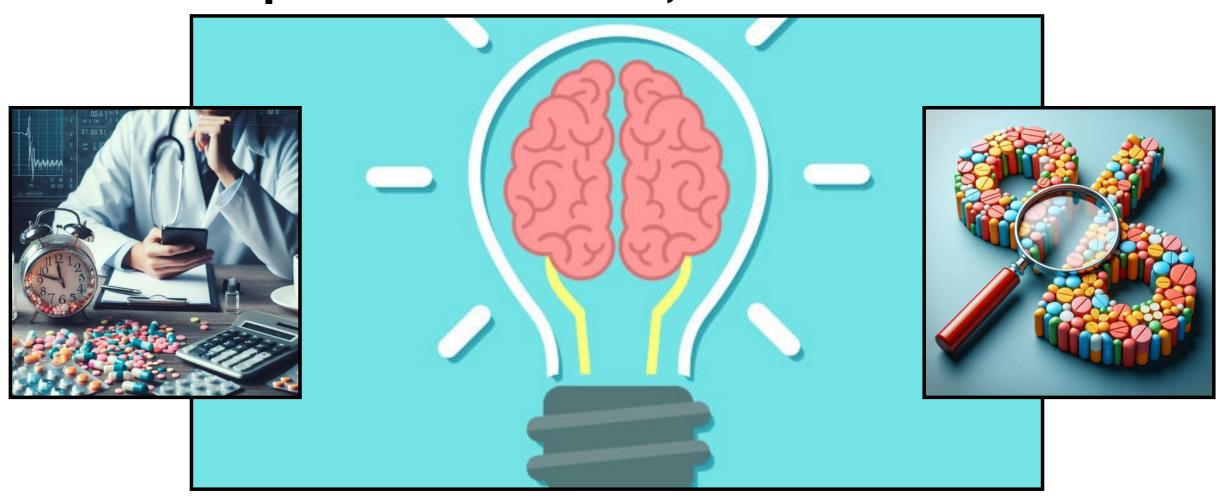
Better health literacy is associated with


better health status

less frequent use of health services

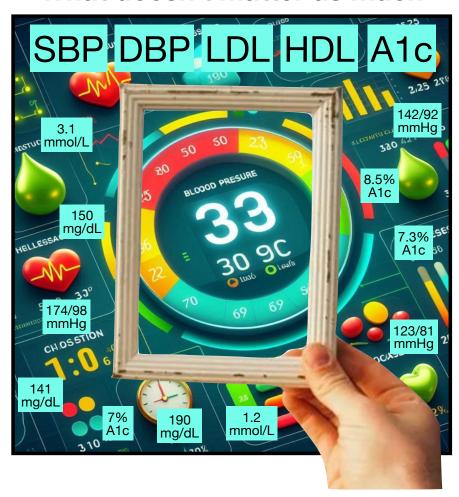
shorter hospital length of stay

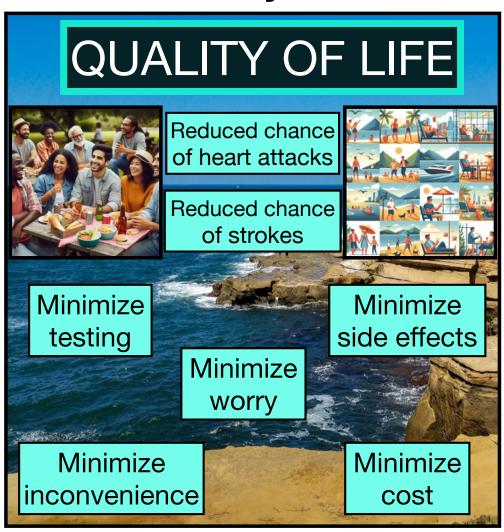
lower mortality


less unhealthy behaviors (smoking, lower physical activity etc)

PLoS One. 2022 Jul 15;17(7):e0271524. doi: 10.1371

Getting Smarter


about the numbers, the risks, the potential benefits, the harms...


Reframe What YOU Think About THE Numbers

Blood pressure, lipids, and glucose

What doesn't matter as much

What Really Matters

They Aren't Actually Sick

A condition vs a disease

When BP/chol/glucose numbers are "high" we often refer to them as chronic "diseases"

HOWEVER - in general, people with:

"high" blood pressure have **NO** symptoms

"high" cholesterol have NO symptoms

Silent Killers

Type 2 diabetes ("high" glucose) - most have NO symptoms (unless glucose is really high then one might experience peeing more frequently, increased thirst, feel tired, recurrent skin/bladder infections)

A much more informative way is to think of these simply as RISK factors Importantly

- 1) it's difficult to make a person with no symptoms feel better
- 2) if a person's blood pressure and/or cholesterol and/or glucose was ZERO, they would be DEAD

YOU might think with "high" numbers the biggest risk is

A heart attack or a stroke

These risks are definitely important BUT...

The ONLY GUARANTEED RISK

is Treatment Burden

TREATMENT BURDEN **AFFECTS EVERYONE**

Health care visits

Dietary restrictions

Taking pills

Side effects

Lab visits

Measuring

Worrying

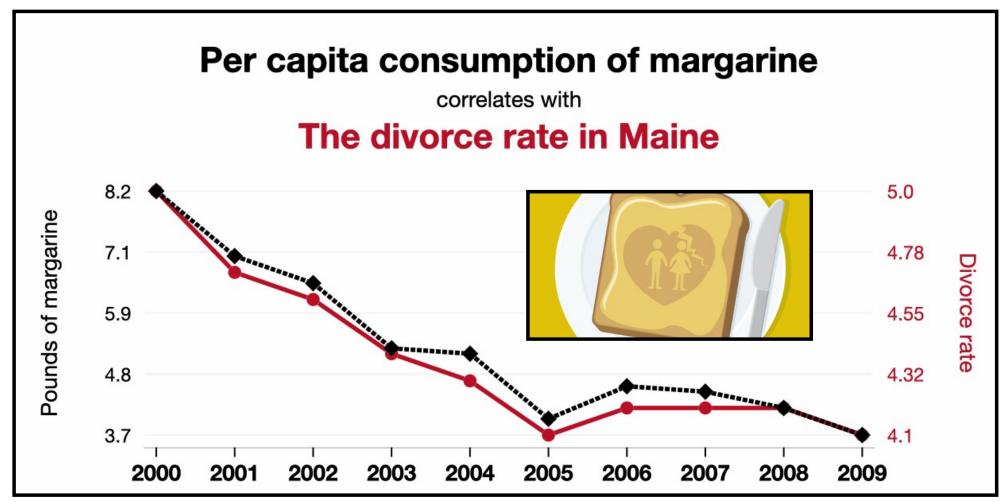
Costs

Inconvenience

Risk Markers

Risk markers

Risk markers - there are 100s of cardiovascular risk markers


Things we can see or measure that have been shown in studies to be **associated** with the risk of a bad outcome (death/heart attack/stroke etc)

REAL EXAMPLES - smoking, cholesterol, blood pressure, snoring, not having siestas, living in Scotland, high levels of phobic anxiety, being scrupulous about keeping appointments, slow beard growth, and ear canal hair have **ALL** been shown to be **ASSOCIATED** with cardiovascular disease

TYPICALLY - for risk markers like blood pressure/cholesterol/glucose when these numbers are higher, they ARE associated with an 1 cardiovascular risk

HOWEVER - simply finding an **association** doesn't mean that a specific risk marker is a **CAUSE** of that bad outcome

If you study **LOTS** of large populations you will find **MANY** associations An example of an association with **NO** causation

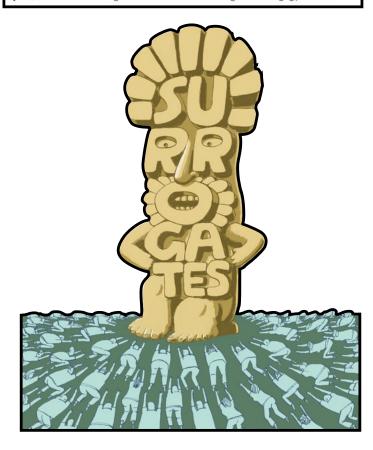
Risk "marker" vs Risk "factor"

Risk factor

If modifying a particular **risk marker** → changes the chance of important clinical outcomes (heart attacks/strokes) then a risk marker is often shifted into being called a potentially modifiable **risk factor**

Blood pressure, lipids and glucose = risk factors - modifiable

AGE, sex = risk factors - non-modifiable


A number of risk factors are also referred to as **SURROGATE MARKERS**

BUT NONE OF THIS MEANS THERE IS A **DEFINITIVE THRESHOLD** OR THAT THERE ARE SPECIFIC **BLACK and WHITE GOOD/BAD NUMBERS**

Risk factors/Surrogate markers VS IMPORTANT Clinical Outcomes

THE IDOLATRY OF THE SURROGATE

Easier to measure surrogate outcomes are often used instead of patient important outcomes such as death, quality of life, or functional capacity when assessing treatments. **John Yudkin, Kasia Lipska**, **and Victor Montori** argue that our obsession with surrogates is damaging patient care

BMJ 2011;343:d7995

LESS IMPORTANT Risk factors/Surrogate Markers

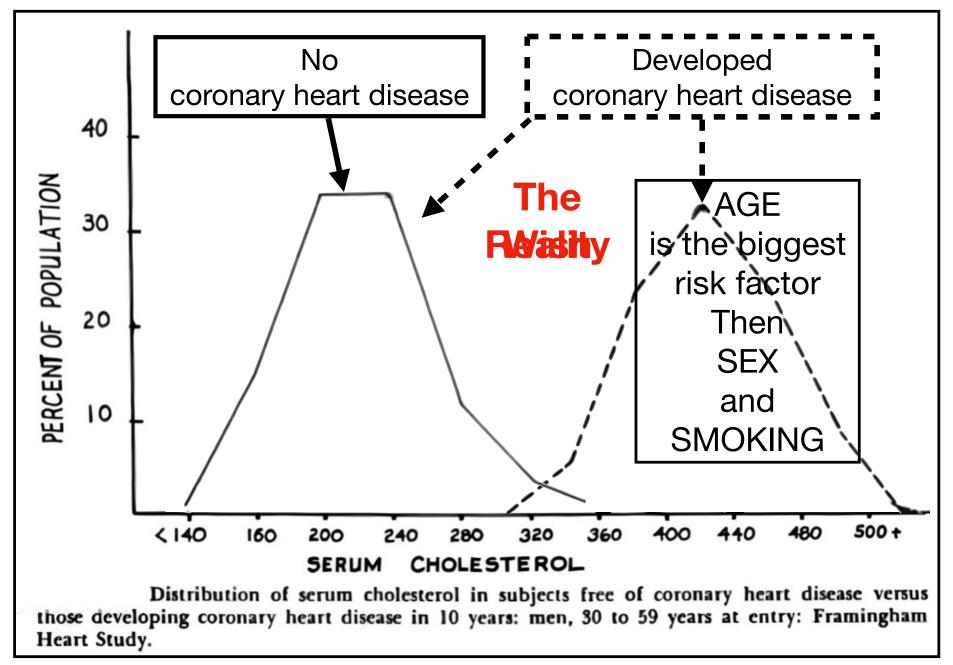
You

CAN'T FEEL THESE

Treating these always have the potential for side effects, inconvenience and cost - all of which typically lower your quality of life

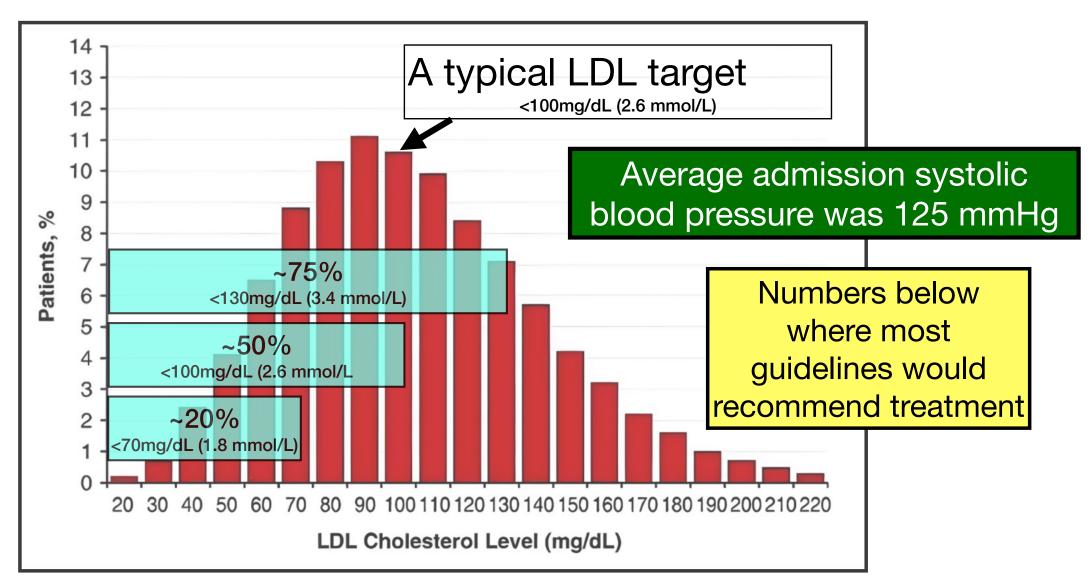
> blood pressure/ lipids/ glucose (diabetes)

IMPORTANT Clinical Outcomes


You

CAN FEEL THESE AND

If we can reduce the risk of these in you that could improve your quality of life


death, heart attacks, heart failure, angina, strokes, transient ischemic attack, coronary artery bypass, stenting, blindness, amputation, kidney failure/dialysis

Risk Factor Context

The association between cholesterol and heart disease

Risk factor #s for people who get hospitalized for heart attacks/bypass/stents

Am Heart J 2009;157:111-7.e2

Lifetime Risk of Fatal and Non-fatal Cardiovascular Events in a 45 y/o

Major risk factors after AGE

- 1. current smoker
- 2. untreated systolic blood pressure >160 mmHg
- 3. untreated total cholesterol > 240 mg/dL (6.2 mmol/L)
- 4. diabetes

	MALE	FEMALE
2 or more major risk factors	50% 30% die of CVD	30% 20% die of CVD
1 major risk factor	40% 20% die of CVD	20% 10% die of CVD

These numbers are still WAY TOO HIGH BUT "most" people (>50%) with 2 or more risk factors WON'T get CVD over a lifetime

Does ↓ a Risk Factor ↓ The Risk of Important Clinical Outcomes?

FACT

To get a blood pressure/cholesterol/diabetes medication on the market just have to show it ↓ the risk factor - you don't have to have evidence that it ↓ clinically important outcomes

IN GENERAL

♣ BP/chol/glucose numbers does → a ♣ in the risk of important clinical outcomes

BUT there are WAY to MANY examples when clinically important benefits did not occur

MEDS - 2-3 blood pressure medications, most diabetes medications marketed before 2015, and 2-3 classes of lipid/cholesterol lowering medications

Personally, I would only use treatments proven to reduce clinical endpoints

FOOD - **most food items** that have been shown to **↓** risk factors almost **never have evidence** that they **↓** clinically important outcomes

2008-2015 was a bad stretch

Between 2008-2015 there were 20* large clinical trials published in major medical journals of treatments that lowered surrogate markers (blood pressure, lipids, glucose)

All 20 trials showed NO cardiovascular benefit - and some showed harm

During that **7 year** period **NOT a SINGLE trial** was published showing a clinical benefit as a result of changing a surrogate marker

*The 20 Large Clinical Trials

ACCORD, ADVANCE, VADT, ROADMAP, ORIGIN, SAVOR-TIMI 53, EXAMINE, ALECARDIO, ACTIVE, CRESCENDO, VISTA-16, AIM-HIGH, HPS2-THRIVE, ACCORD (fibrates), dalOUTCOMES, STABILITY, ALTITUDE, VALISH, AASK, ACCORD (blood pressure)

Things improved somewhat after that

SUCCESSES

2015 EMPA-REG OUTCOME (empagliflozin) - ~3% ↓ mortality/heart failure over 3 years

2015 SPRINT (120mmHg vs 140mmHg) - 1.6% ↓ CVD over 3 years but also 1.8% ↑ kidney issues

2016 LEADER (liraglutide) - 1.8% ↓ CVD over 4 years

2016 HOPE 3 - statins **YES**, BUT blood pressure **NO** benefit

2017 FOURIER - 1.6% ↓ CVD over 2 years BUT \$15,000/year

But still failures can occur

2017 ACCELERATE (evacetrapib) - increased HDL (130%), reduced LDL (40%) - no CVD benefit

We always need to large clinical trials!!

KEY Concepts to Appreciate

- 1) ♣ A RISK FACTOR (blood pressure/lipids/glucose) DOES NOT GUARANTEE THERE WILL BE A ♣ IN THE RISK OF IMPORTANT CLINICAL OUTCOMES

 It very much depends what you did to change the risk factor
- 2) WHEN THERE IS A ♣ IN THE RISK OF IMPORTANT CLINICAL OUTCOMES (heart attacks/strokes etc) THE MAGNITUDE OF THE ♣ IS OFTEN FAR LESS THAN YOU MIGHT THINK

REMEMBER the majority of people will not get CVD - if you weren't going to get CVD in the first place then one gets **NO benefit** - but one does get a lifetime of worry and treatment

Summary

KEY POINTS

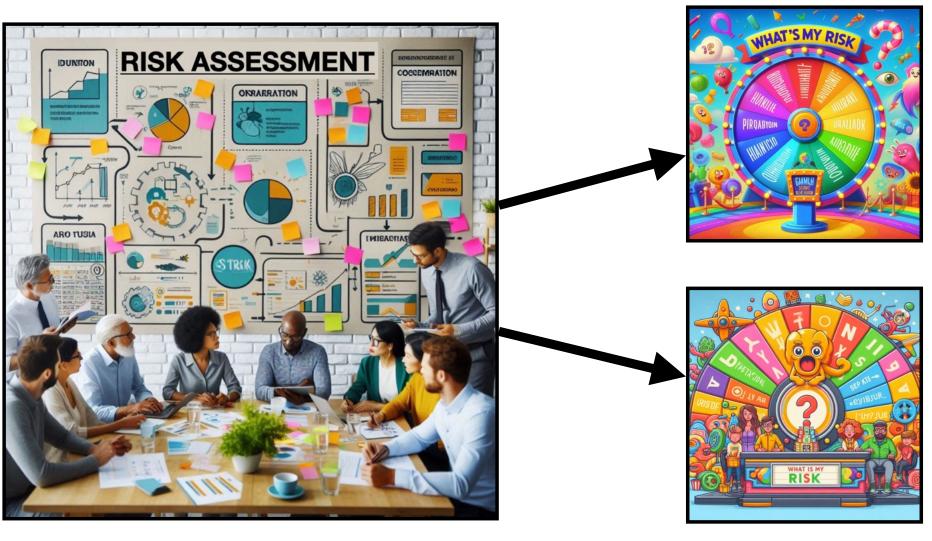
Association does not necessarily = causation

Studies have shown for the most part a clear **association** between blood pressure, lipids and glucose, and an increased risk for heart attacks, strokes and other clinical outcomes. $\checkmark \checkmark \checkmark \checkmark$

At least half of the people with a heart attack have "normal" blood pressure and cholesterol

However, what the risk of a real disease/outcome is KEY

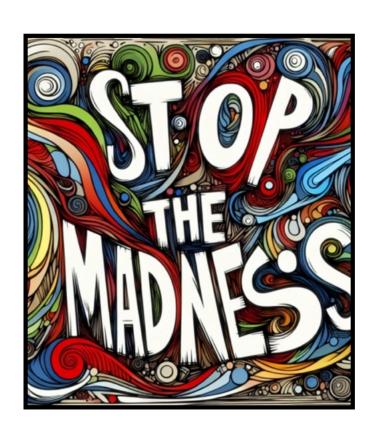
Death, heart attacks, strokes, kidney problem etc??

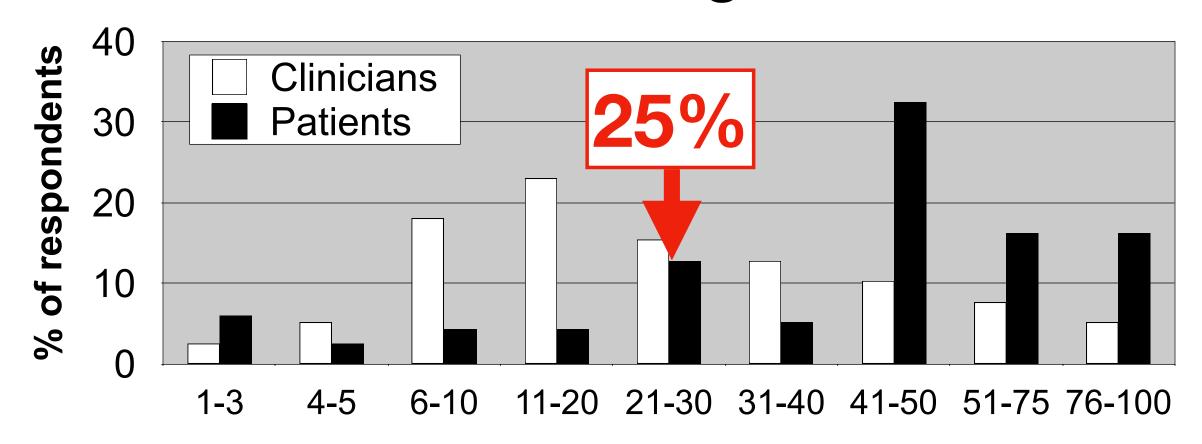

Health Risk Numbers

What Is The Risk?

Heart attack/stroke

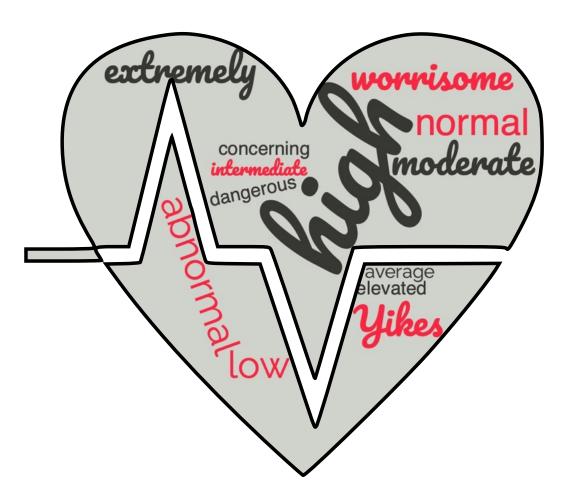
If you are telling someone they have "HIGH" blood pressure/ cholesterol/ glucose


KNOWING
THE RISK
SHOULD
ALWAYS BE
STEP #1


Words DON'T accurately convey risk - PERIOD!

- * low risk
- * moderate risk
- * high risk
- * very high risk
- * extremely high risk
- * "how are you still alive" risk

What is "High Risk"



Chance of a heart attack in the next 5 years (%)

A 60 y/o, male, smoker, diabetic, SBP 180 mmHg, total cholesterol 280mg/dL or 7.2 mmol/L

5-year risk of heart attack PLUS stroke is at most ~ 25%

Risk words are a "big" problem

These types of words do NOT inform you as to YOUR actual risk

Heart attacks?
Strokes?

1%?

5%?

10%?

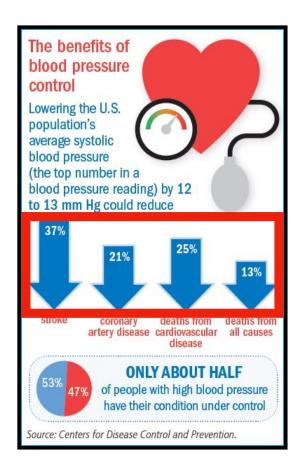
15%?

20%?

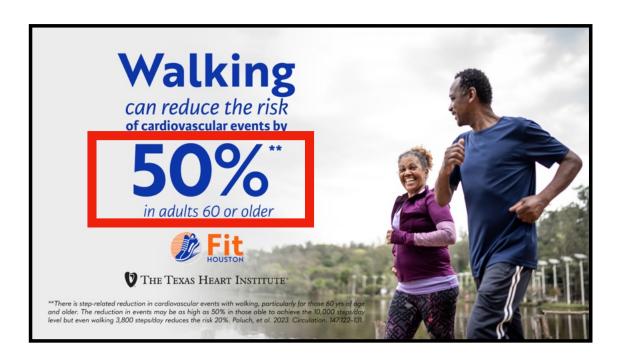
1 year?

5 years?

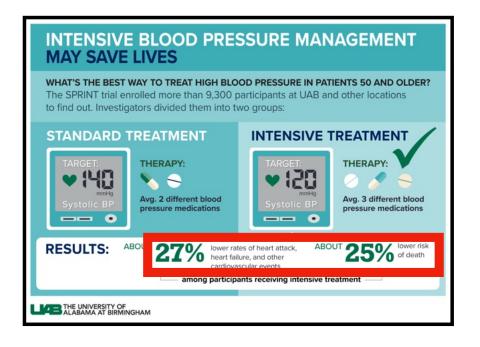
10 years?


20 years

Ever?


Numbers are essential, BUT they can also be misleading

When you see/hear CVD benefit **NUMBERS** greater than 10% these can be misleading unless they are put into the proper context

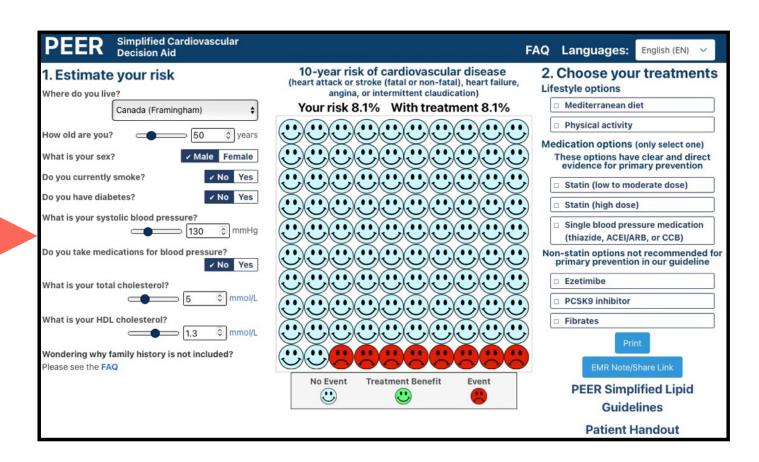


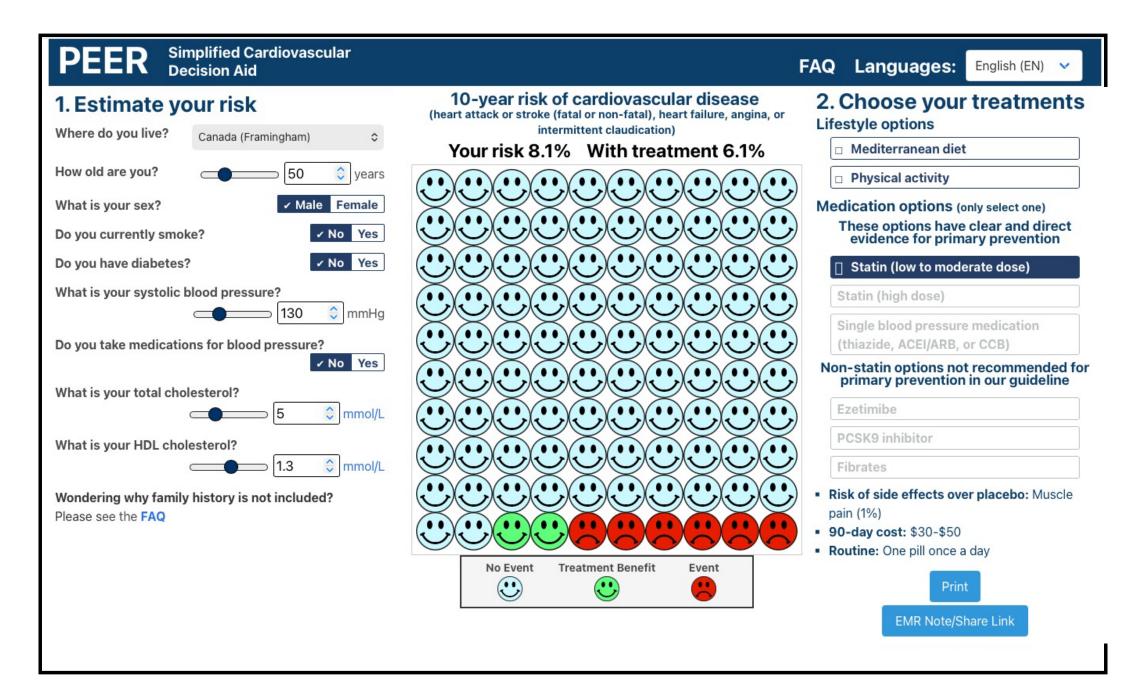
NONE of these are DRUG COMPANY ads!

!IMPORTANT!

How BIG was the difference?

REMEMBER If you hear that ANYTHING is beneficial or harmful and the number is ≥10% this is almost always a RELATIVE number


MONEY #s VS MEDICAL RESEARCH #s


MONEY	Units - dollars		Units - risk of an outcome such as a heart attack
Pre-sale price	\$10	Baseline risk	10% over 10 years
SALE SIGN	30% off	RELATIVE BENEFIT	30% reduction/benefit
New price	\$7	New risk	7%
Absolute	\$3		3%
savings		reduction	
Relative price	\$7 = 70% of original price \$10	Risk ratio or point estimate	7% = 0.70 or 70% of original risk 10%

ABSOLUTE
NUMBERS
3%
BENEFIT
AND
97%
GET
NO
BENEFIT

There are better ways to explain risks/benefits/harms

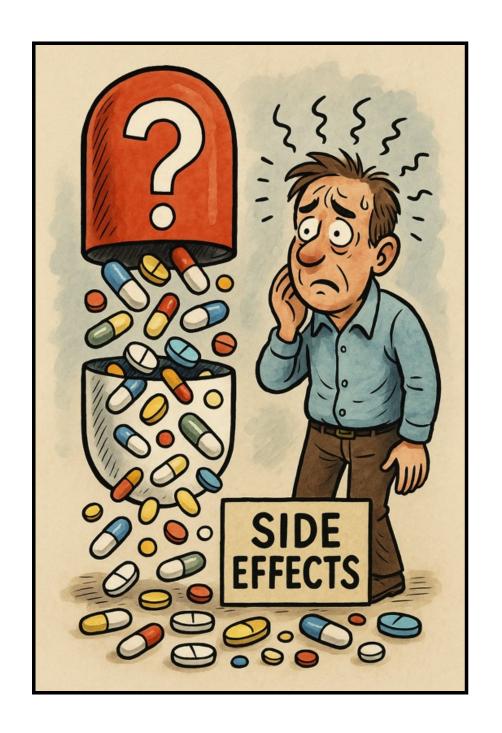
Treatments that have decent RCT evidence of benefit

in people who have never had a cardiovascular event

	e and their e benefits*	Medications and their relative benefit*				t*	
Lifestyle	Heart attack/ stroke benefit	Blood pressure	Heart attack/ stroke benefit	Lipids	Heart attack/ stroke benefit	Glucose	Heart attack/ stroke/kidney benefit
Mediterranean diet	30%↓	Salt substitute 75%Na/25%K	10-15% ♣	Statins lower dose	25%↓	Metformin	? only 1 trial
Moderate physical activity	25% ↓	Thiazide lower dose	25% ♣	Statins higher dose	an extra 10 % ↓	SGLT2's	15%↓
		ACE/ARB lower dose	25% ♣	Ezetimibe	5%. ↓	GLP's	15%↓
		Betablockers, calcium channel blockers	Some but less than those above	PCSK9 Inhibitors	15%↓	Sulfonlyureas, Insulin, DPP4s	0%

^{*}Regardless of their effect on the specific risk factor - all numbers are rounded

Simply apply the estimated RELATIVE benefit to the estimated ABSOLUTE baseline risk


10% risk - 25% benefit - NEW risk = 7.5% So 2.5% benefit - 97.5% no benefit

20% risk - 30 % benefit - NEW risk = 14% So 6% benefit - 94% no benefit

"But 10 years isn't enough"

- some people will say that 10 years is not long enough
- but 10 years is a long time to treat
- risk calculator estimates typically over-estimate the risk
- for 20 years then roughly double the risk but even that is an overestimate
- lifetime risk with 2 risk factors MALE 50% FEMALE 30%
- we only delay death, NEVER prevent it

Actual Side Effects

Worrying about Side Effects

Inconvenience

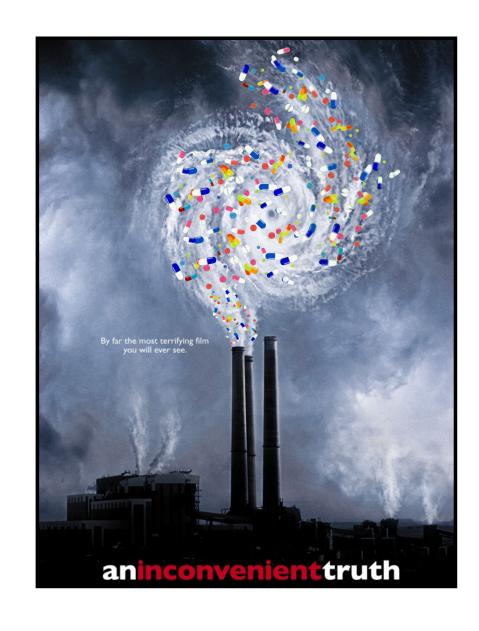
Get the prescription

Fill the prescription

Pay for the prescription

Take the prescription

Labelling/worry



Monitoring adds to the...

Glucose

complexity
worry
inconvenience

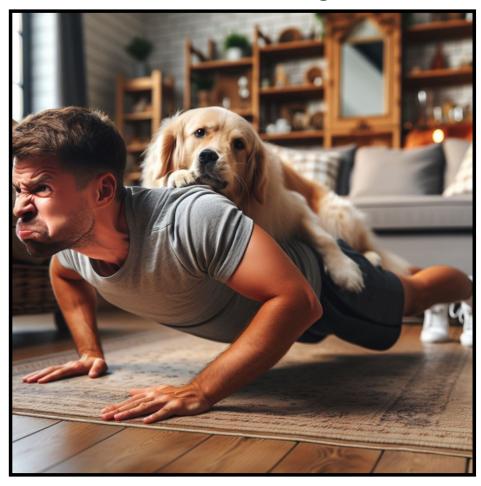
24 hour monitoring

Lipids/cholesterol

Blood pressure

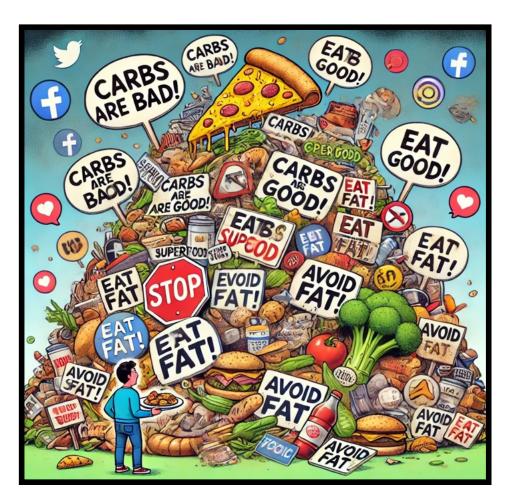
Continuous monitoring

Costs



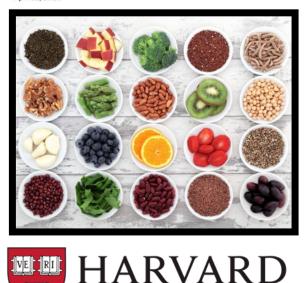
Lifestyle

Nutrition


Activity

Are obviously "important"

Nutrition



An incredible amount of BS

HARVARD HEALTH BLOG

10 superfoods to boost a healthy diet

April 13, 2020

UNIVERSITY

https://www.gousto.co.uk/blog/top-10-superfoods

In 2015 alone - 36% rise in the number of food and drink products launched globally featuring the terms "superfood", "superfruit" or "supergrain".

SUPERFOODS?

Classification of the groups of superfoods by the number of times that were mentioned in selected web pages.

	Number of Times Mentioned						
Group of Superfoods	First Page	Second Page	Any Time	Past Year	Total Mentions		
Leafy greens and cruciferous vegetables	122	32	108	46	154		
Whole grain cereals, seeds and cereals	71	33	67	37	104		
Berries	65	25	65	25	90		
Fish and seafood	44	17	37	24	61		
Other fruits	41	16	33	24	57		
Nuts	46	6	34	18	52		
Legumes	33	14	25	22	47		
Spices and herbs	22	10	20	12	32		
Fermented foods	23	6	14	15	29		
Teas and infusions	13	5	9	9	18		
Fats and oils	12	4	7	9	16		
Other vegetables and plant-based foods $^{\rm 1}$	87	23	59	51	110		
Other animal-based foods and other ²	14	7	12	9	21		

 $^{^{\}rm 1}$ Miscellaneous group of 19 plant-based foods. $^{\rm 2}$ Miscellaneous group of 7 animal-based foods.

SUPERMAN

Foods 2023;12(3):546. doi:10.3390/foods12030546

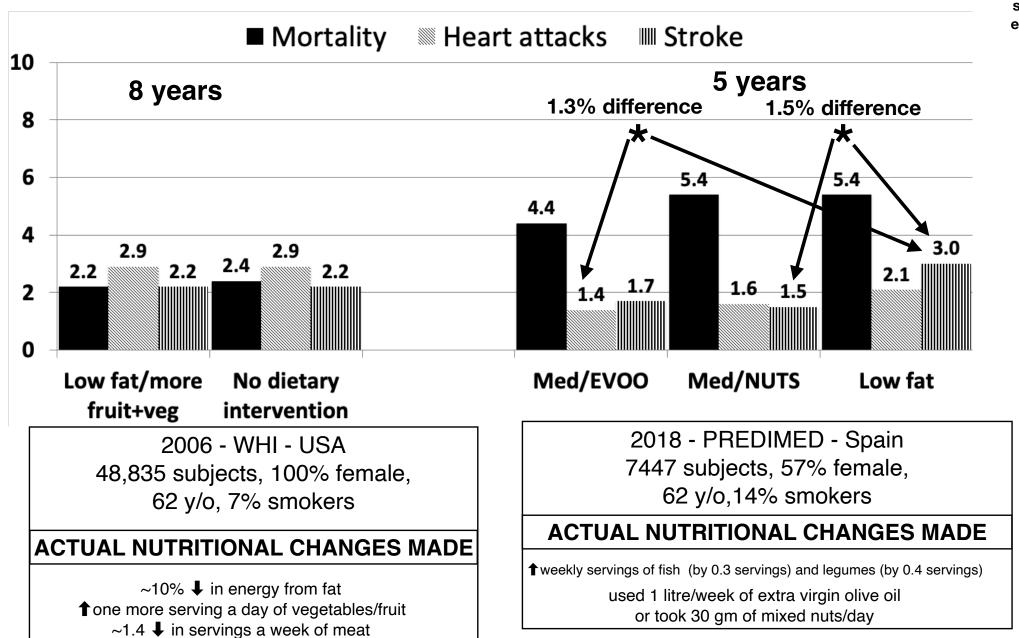
The 5 large trials of nutrition intervention

NO PREVIOUS HISTORY OF HEART ATTACK/STROKE

Women's Health Initiative 2006 - 46,000 women - 8 years

PREDIMED 2018 - 7500 people, 57% female - 5 years

HISTORY OF HEART ATTACK/STROKE


DART 1989 - 2,000 men - 2 years

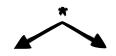
LYON 1994 - 600 people, 10% female - 2 years

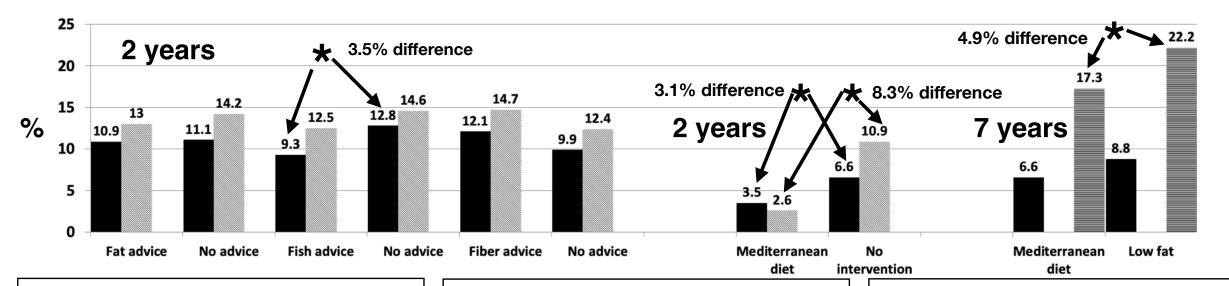
CORDIOPREV 2022 - 1000 people, 17% female - 7 years

People with NO previous history of heart attacks/strokes

%

these numbers were reported as statistical different, everything else was not statistically different




The 5 large RCTs of nutrition intervention

People with previous history of heart attacks/strokes

these numbers were reported as statistical different, everything else was not statistically different

■ Mortality Heart attacks Overall CVD

1989 - DART - Wales 2033 subjects, 100% male, 56 y/o, 62% smokers

ACTUAL NUTRITIONAL CHANGES MADE

fibre intake from ~10g/day to ~20g/day
 polyunsaturated/saturated fat ratio from ~0.4 to ~0.8 fish intake - ↑ EPA from ~0.7g/week to ~2.4g/week
 fat energy from ~35 % to ~32%

1994 - Lyon - France 605 subjects, 90% male, 53 y/o, ~15-20% smokers

ACTUAL NUTRITIONAL CHANGES MADE

- → polyunsaturated/saturated fat ratio
- ♣ cholesterol 318 mg/day vs 217 mg/day
 - **↓** calories ~2100 vs ~1900
- Intake of butter, cream, meat, ham, sausage, and offal

2022 - CORDIOPREV - Spain 1002 subjects, 83% male, 60 y/o, ~10% smokers

ACTUAL NUTRITIONAL CHANGES MADE

Med diet

- 1 total fat from 37% to 41%
- ↑ amount of extra virgin olive oil/nuts/oily fish
 - ↓ carbs from 41% to 37%

Low fat diet

- **↓** total fat from 37% to 32%
- 1 carbs from 42% to 46%

Systematic review and network meta-analysis of randomised controlled trials. All numbers are absolute differences - over 5 years

BASELINE RISK	5-10% 5-year CVD risk			20-30% 5-year CVD risk				
Dietary programme <i>v</i> minimal intervention (usual or no/ minimal advice)	All cause mortality	Cardiovascular mortality	Stroke	Non-fatal myocardial infarction	All cause mortality	Cardiovascular mortality	Stroke	Non-fatal myocardial infarction
Mediterranean	2%↓	1%↓	1%↓	2%↓	4%↓	4% ↓	2%↓	4%↓
Low fat (20-30% of diet)	1%↓	No difference 1%↓			2%↓	No difference		2%↓
Very low fat (10-20% of diet)	No difference							
Modified fat (↑ polyunsaturated fat/ ↓ saturated fat)		No difference						
Combined low fat-low sodium		No difference						
Ornish (<10% fat)	No difference							
Pritikin (<10% fat)		No difference						
Low carb	NO TRIALS							

By far the best, if not the only, nutrition RCT evidence for cardiovascular outcomes (heart attacks/strokes) comes from the

Mediterranean Diet - ↓ CVD ~30%

Med Diet is approximately the same as the

DASH Diet

Most national food guides

US

Canada

Low fat diet - minimal evidence of cardiovascular benefit

Low carb diet - NO evidence one way or the other

AS WITH EVERY DIET

Eat in "moderation"

Weight perspective - all about moderation if any effect on risk factors

BUT THERE ARE BIG CAVEATS

Almost all the nutrition "benefits and harms" evidence comes from cohort studies

real possibility of important publication bias because 100s to 1000s of researchers are looking at 100s of different databases

many potential confounders - let alone data collection issues

many associations seen in cohort studies are quite small (<10% relative) and only seen when you compare "lots quantiles" to "not much at all quantiles"

in general - single cohorts - unless that is all you have - should not be used as solid evidence

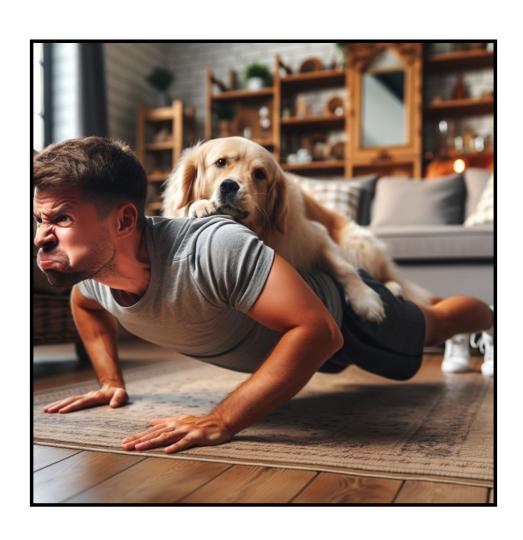
A lot of nutrition research is based on surrogate marker (blood pressure, lipids, glucose) impact

the changes seen **IF** they translated into effects on clinical outcomes would only amount to a 1% (at most 2%) absolute change in CVD risk over 10 years

in general - single RCTs of surrogates - should not be considered high quality evidence

There are only 5 large RCTs (2+years) that have looked at important clinical outcomes

the "best evidence" is for the "Mediterranean Diet" and even that only showed a 1 to 2% absolute ↓ in stroke over 5 years in people without a history of CDV - and a bigger decrease (↓3 to 8%) for people with a history of CVD


Nutrition advice to which pretty much everyone agrees

But the magnitude of the effect is "smaller than you may think"

based on the Best Available Evidence

- 1. Eat a greater percentage of whole foods (food that has not been overly processed or refined as little as possible)
- 2. Eat more vegetables
- 3. Eat less added sugar
- 4. Eat more whole grains
- 5. Eat in a style that fits your food preferences, tolerances, and lifestyle
- 6. Eat in a style you can sustain
- 7. When it comes to weight, how much you eat is really the KEY issue
- 8. The "best" weight is the weight you are when living the healthiest life you can enjoy
- 9. Avoid any food that has, for you, been properly shown to cause unacceptable intolerances

Activity

Aerobic Activity Examples

Moderate-intensity

brisk walking - at least 4 km/2.5 miles/hour water aerobics ballroom or social dancing gardening doubles tennis

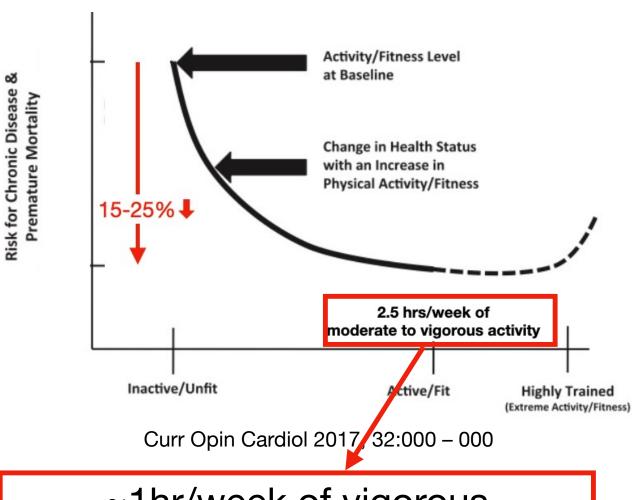
biking - slower than 15 km/10 miles/hour

Vigorous-intensity

hiking uphill or hiking with a heavy backpack running

swimming laps

vigorous aerobic dancing


heavy yard work such as continuous digging or hoeing singles tennis

biking - 15 km/10 miles/hour or faster

jumping rope

https://www.heart.org/en/healthy-living/fitness/fitness-basics/aha-recs-for-physical-activity-in-adults

There is NO specific activity THRESHOLD BUT...

~1hr/week of vigorous and/or ~4-5hr/week of moderate activity

Summary Table: Total Steps vs. Health Outcomes

Daily Steps	Associated Benefit
~2,300	Reduced cardiovascular death risk Harvard Health
~3,800–3,900	Lower all-cause mortality & dementia risk Marie Harvard Health kumc.edu uclahealth.org
~4,000–5,000	General health gains; threshold beyond sedentary levels New York Post hsph.harvard.e-uclahealth.org
~6,000–8,000	Benefits plateau for older adults sph.unc.edu The University New York Post
~8,000–10,000	Plateau benefits for younger adults sph.unc.edu uclahealth.org New York Post
10,000+	Strong across-the-board benefits (cardio, dementia, chronic illness) kumc.edu uclahealth.org

Final Take (with a wink)

The "10,000 steps" myth is fading—but the truth is way more encouraging. Even under **4,000 steps a** day can move the needle on major health risks. The major gains come early, and the payoff plateaus between **6,000–8,000** for older adults and **8,000–10,000** for younger ones. And remember: quantity beats intensity when counting your steps.

Activity Evidence

Exercise for secondary prevention (RCTs)

Death at 4 years - NNT= 32
Heart failure admissions at 2 years - NNT = 14
Similar to medications?
Tools for Practice #145

Exercise for primary prevention (Cohorts)

Going from inactivity to current recommendations CVD - RR = 0.83 (0.77-0.89)

J Am Heart Assoc. 2016;5:e002495 doi: 10.1161/JAHA.115.002495

Exercise for patients with major depression: a systematic review with meta-analysis and trial sequential analysis

Jesper Krogh, ¹ Carsten Hjorthøj, ¹ Helene Speyer, ¹ Christian Gluud, ²

BMJ Open 2017;7:e014820.

"There is currently no evidence in favour of exercise for patients with depression with a view to ameliorate depressive symptoms" Low vs high risk for bias issue

Effects of Physical Activity in Knee and Hip Osteoarthritis: A Systematic Umbrella Review

VIRGINIA B. KRAUS¹, KYLE SPROW², KENNETH E. POWELL¹, DAVID BUCINER⁴, BONNY BLOODGOOD⁴, KATENIA PIERCY⁶, STEPHANIE M. GEORGE⁷, and WILLIAM E. KRAUS¹, FOR THE 2018 PHYSICAL ACTIVITY GUIDELINES ADVISORY COMMITTEE⁸

Medicine & Science in Sports & Exercise 2019;51:1324-39

"Physical activity decreases pain, improves physical function and HRQoL among people with hip and/ or knee OA relative to less active adults with OA"

Blood Pressure

Therapeutic Class	Generic	Common Canadian brand(s)	Typical starting dos Usual dose range	
FIRST LINE				
	Hydrochlorothiazide	Various generics (formerly HydroDIURIL/Esidrix)	12.5–25 mg qAM	12.5-50 mg/day
Thiazide-type diuretics	Chlorthalidone	Generics; (Thalitone in some markets)	12.5 mg qAM	12.5-25 mg/day
	Indapamide	Lozide (indapamide) / generics	1.25 mg qAM	1.25-2.5 mg/day
COULD BE FIRST LINE				
	Ramipril	Altace / generics	2.5 mg	2.5-10 mg/day
	Perindopril	Coversyl / generics	2–4 mg	4-8 mg/day
	Enalapril	Vasotec / generics	5 mg	5-40 mg/day (divided)
ACE inhibitor	Lisinopril	Prinivil/Zestril / generics	5–10 mg	10-40 mg/day
	Cilazapril	Inhibace / generics	1 mg	1-5 mg/day
	Fosinopril	Monopril / generics	10 mg	10-40 mg/day
	Trandolapril	Mavik / generics	1 mg	1-4 mg/day
	Losartan	Cozaar / generics	25–50 mg	50-100 mg/day
	Valsartan	Diovan / generics	80 mg	80-320 mg/day
	Irbesartan	Avapro / generics	150 mg	150-300 mg/day
ARB	Candesartan	Atacand / generics	8 mg	8-32 mg/day
	Telmisartan	Micardis / generics	40 mg	40-80 mg/day
	Olmesartan	Olmetec / generics	20 mg	20-40 mg/day
NEXT LINE				
	Amlodipine	Norvasc / generics	2.5–5 mg	5-10 mg/day
CCB (dihydropyridine)	Nifedipine XL	Adalat XL / generics	30 mg	30-90 mg/day
	Felodipine	Plendil / generics	2.5–5 mg	5-10 mg/day
	Diltiazem (CD/TZ)	Cardizem/Tiazac / generics	120–180 mg	120-360 mg/day
CCB (non-DHP)	Verapamil SR	Isoptin SR / generics	120–180 mg	120-360 mg/day
	Metoprolol (IR/SR)	Generics (Lopresor SR formerly)	25–50 mg	50-200 mg/day
	Bisoprolol	Monocor / generics	2.5–5 mg	2.5-10 mg/day
Beta-blocker	Atenolol	Tenormin / generics	25–50 mg	50-100 mg/day
	Propranolol (LA)	Inderal-LA / generics	60–80 mg	80-240 mg/day
	Carvedilol	Coreg / generics	6.25 mg BID	6.25–25 mg BID
Add-on for hypokalemia prevention				
	Amiloride	Generics	5 mg	5-10 mg/day
Potassium-sparing	Triamterene	Generics (often in combos)	50 mg	50-100 mg/day
Difficult to control and for hypokalemia				
	Spironolactone	Aldactone / generics	12.5–25 mg	12.5-50 mg/day
Mineralocorticoid receptor antagonists	Eplerenone	Inspra	25 mg	25–50 mg BID
If fluid overload is an issue				
	Furosemide	Lasix / generics	20-40 mg	20-160 mg/day (divided
Loop diuretics	Torsemide	Demadex / generics	2.5–5 mg	2.5-20 mg/day
PRETTY MUCH DON'T USE				
	Doxazosin	Cardura / generics	1 mg HS	1-8 mg/day
Alpha-1 blocker	Prazosin	Minipress / generics	1 mg BID	2–5 mg BID/TID
	Terazosin	Hytrin / generics	1 mg HS	1-10 mg/day
Central alpha-2 agonist	Clonidine	Catapres / generics	0.1 mg BID	0.1–0.3 mg BID
Central agent	Methyldopa	Aldomet / generics	250 mg BID	250–500 mg BID/TID
	Hydralazine	Apresoline / generics	10–25 mg TID	25–100 mg TID/QID
Direct vasodilator	Minoxidil	Loniten / generics	2.5–5 mg	5-40 mg/day
Direct renin inhibitor	Aliskiren	Rasilez / Tekturna (availability variable)	150 mg	150–300 mg/day

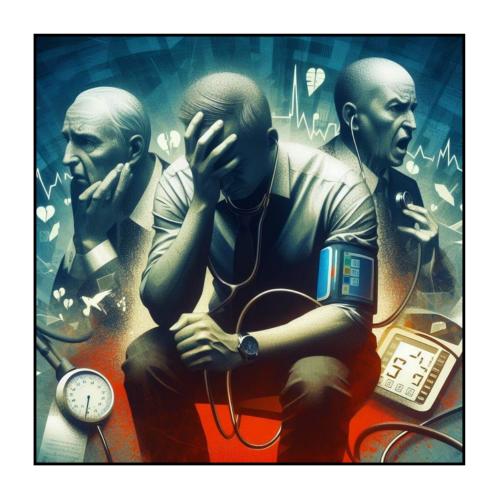
Canadian Blood Pressure Meds

Getting the real BP#s

How much does the BP impact the estimated CVD risk?

How much do treatments change BP?

How much do treatments reduce CVD risks?


What are the harms of treatment?

SBP

How often do you have to re-measure BP?

Reducing the "pressure" of high blood pressure

GOAL = Make it as Simple as Possible - but not Simpler

What is the "real" SBP

White Coat Hypertension (WCH)

10-30% of people with elevated office BP have "WCH"

WCH = when you get a higher blood pressure reading in the health care providers office than one does at home

Most (but not all) studies have shown that WCH is **NOT** associated with an increased risk of cardiovascular events and/or mortality

Hypertens Rep. 2024 May 18. doi: 10.1007/s11906-024-01309-0

KEY MESSAGE - risk should be based on what the SBP is "at **HOME**" - so likely best to use HOME numbers to estimate CVD risk - either 24-hr ambulatory or home measurements

Home measurements - no absolute rule - for ~ 1 week take 2 measurements in both the **morning** and **evening** separated by **1 minute -** then roughly **average** all the numbers over the week and consider that **YOUR SBP**

- 2) Meds That Increase BP daily use of ibuprofen, naproxen and acetaminophen
- 3) Primary Aldosteronism ~ 10% as high as 10-30% if resistant hypertension

Drug-Induced Blood Pressure

Prescription Drugs:

NSAIDs, including coxibs

Corticosteroids and anabolic steroids

Oral contraceptive and sex hormones

Vasoconstricting/sympathomimetic decongestants

Calcineurin inhibitors (cyclosporin, tacrolimus)

Erythropoietin and analogues

Monoamine oxidase inhibitors (MAOIs)

Midodrine

Other substances:

Alcohol, Licorice root, Stimulants including cocaine, Salt.

How much do "lifestyle" treatments lower SBP?

Intonvontion	SBP	
Intervention	mmHg	
Diet and weight control	-6.0	
Reduced sodium intake	-5.4	
Reduced alcohol intake (if heavy)	-3.4	
DASH diet	-11.4	
Physical activity	-3.1	
Relaxation techniques	-5.5	
Increased potassium intake	-3.5	

Average person consumes between 3,000 and 3,500 mg of sodium (Na) = ~ 1.5 teaspoons of salt

Decrease Na/Salt by 1/3

♣ sodium by ~1800 mg/day	SBP
High blood pressure	↓ 5 mmHg
"Normal"	↓ 2.5 mmHg

BMJ 2013; 346 doi: https://doi.org/10.1136/bmj.f1325

Salt substitutes also **♣** SBP by 5 mmHg

Heart 2022;108:1608-1615. doi:10.1136/heartjnl-2022-321332

100% NaCl

Pretty much don't have to worry about the amount of salt

~80%+ people have no taste issues with 75/25 salt

Effect of alcohol reduction on BP

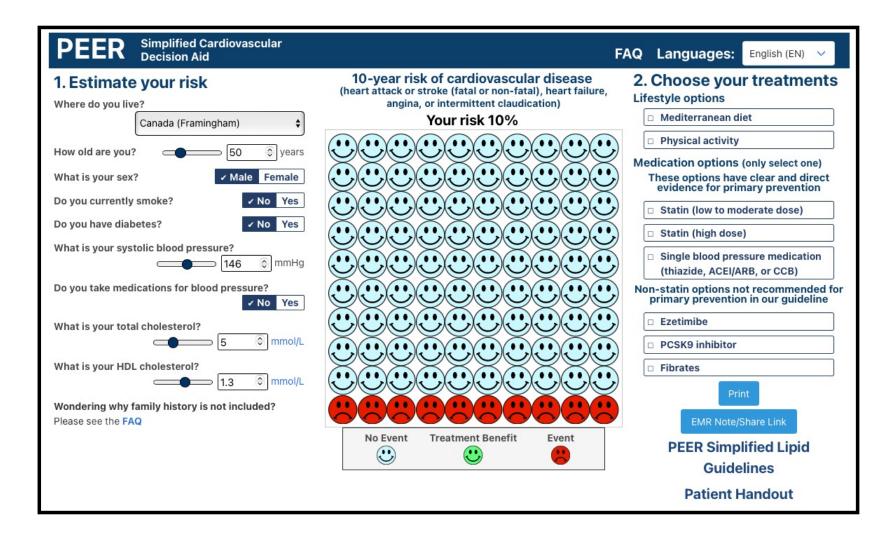
Amount of regular alcohol use	Reduction in alcohol consumption by 50% 1-104 weeks	
2 or fewer drinks a day	No effect on blood pressure	
3 drinks a day	↓ 1/1 mmHg	
4-5 drinks a day	↓ 3/2 mmHg	
6+ drinks a day	↓ 6/4 mmHg	

Meta-analysis - 36 trials 2017 Roerecke

Blood pressure treatments and their relative benefit on cardiovascular disease

Medication Examples

Thiazide	BRAND NAME	
Hydrochlorothiazide	Hydrodiuril	
Chlorthalidone	Hygroton	
ACE inhibitor		
Indapamide	Lozide	
Ramipril	Altace	
Lisinopril	Zestril	
Perindopril	Coversyl	
Enalapril	Vasotec	
ARB		
Losartan	Cozaar	
Candesartan	Atacand	
Valsartan	Diovan	
Telmisartan	Micardis	
Losartan	Cozaar	
Olmesartan	Benicar	


		Heart attack/ stroke benefit	
1st	Salt substitute 75%Na/25%K	10-15% ♣	
2nd	Thiazide lower dose	25%↓	
3rd	ACE/ARB lower dose	25%↓	
Others	Betablockers, calcium channel blockers	Some but less than those above	

There are also a number of combination products

Thiazide/ACE Thiazide/ARB

If use generic medications and/or combos and/or split tablets
Cost should be <\$150/year

Let's say the risk of a cardiovascular event is

10% over the next 10 years

IMPORTANT

An Example of the Numbers

	Relative benefit	10% BASELINE 10-year risk of a heart attack or stroke	# of people who get a benefit from 10 years of "treatment"	# of people who get NO benefit from 10 years of "treatment"
Salt substitute	10-15% ♣	Revised Risk ~8-9%	1-2%	98-99%
add 1 BP medication	25%↓	Revised Risk ~6-7%	3-4%	96-97%

If **BASELINE** risk was **5%** then cut these numbers in **HALF**

If **BASELINE** risk was **20%** then **DOUBLE** these numbers

HARMS

VERY MUCH DOSE DEPENDENT ~10%? don't "tolerate" a particular medication at standard doses

Hypotension is likely the most important risk

Thiazides/Diuretics

TOXICITY

Hypotension

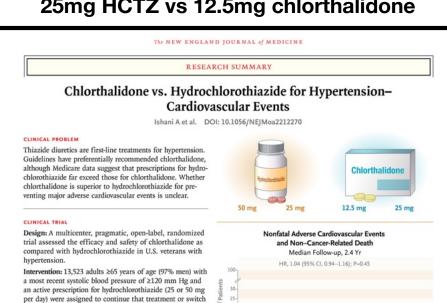
Hypokalemia

Gout

Hyperglycemia?

Hypomagnesemia

Hypercalcemia


Hyperlipidemia

Blood dyscrasias

Photosensitivity

Gynecomastia (spironolactone)

NEJM 2022 - Pragmatic trial 13,500 people - 2.5 years 25mg HCTZ vs 12.5mg chlorthalidone

non-cancer-related death.

Efficacy: During a median follow-up of 2.4 years, the incidence of primary-outcome events did not differ significantly between the chlorthalidone and hydrochlorothiazide groups.

to chlorthalidone (12.5 or 25 mg per day). The primary out-

come was a composite of nonfatal cardiovascular events (myocardial infarction, stroke, heart failure hospitalization, or urgent coronary revascularization for unstable angina) or

Safety: The incidence of hospitalization for any cause did not differ between the groups. Hypokalemia was more common in the chlorthalidone group than in the hydrochlorothiazide group.

LIMITATIONS AND REMAINING QUESTIONS

- More patients assigned to receive chlorthalidone switched back to hydrochlorothiazide, as compared with patients assigned to continue treatment with hydrochlorothiazide switching over to chlorthalidone — possibly owing to the open-label nature of the trial.
- Only 5% of participants were receiving a daily 50-mg dose
 of hydrochlorothiazide at baseline; thus, the trial primarily
 compared hydrochlorothiazide at a daily dose of 25 mg
 with chlorthalidone at a daily dose of 12.5 mg, and the results should not be extrapolated to other dosages.

Links: Full Article | NEJM Quick Take | Editorial

CONCLUSIONS

In a large pragmatic trial among U.S. veterans with hypertension, patients who received chorthalidone did not have a lower occurrence of nonfatal cardiovascular events or non-cancer-related death than those who received hydrochlorothiazide.

Copyright © 2022 Massachusetts Medical Society

Chlorthalidone

NO DIFFERENCE

HCTZ - 10% vs Chlorthalidone -10.4%

Composite of nonfatal myocardial infarction, stroke, heart failure resulting in hospitalization, urgent coronary revascularization for unstable angina, and non-cancer-related death

Low potassium ~1.5% ★ in chlorthalidone vs HCTZ

6% vs 4.4%

ACE Inhibitors

CONTRAINDICATIONS

Intolerance or allergic reaction to ACE inhibitors

Pregnancy

Rapidly worsening renal failure

Severe hypotension

Bilateral renal artery stenosis, unilateral renal artery stenosis in a patient with one kidney

TOXICITY

Acute renal failure - esp if volume depleted

Hyperkalemia

Hypotension

Dry cough -5-20%

Rash, mucosal ulcerations

Angioedema

Angiotensin II receptor antagonists

CONTRAINDICATIONS

Intolerance or allergic reaction to ARBs

Pregnancy

Rapidly worsening renal failure

Severe hypotension

Bilateral renal artery stenosis, unilateral renal artery stenosis in a patient with one kidney

TOXICITY

Acute renal failure - esp if volume depleted

Hyperkalemia

Hypotension

Angioedema - reported??

Betablockers

CONTRAINDICATIONS

Asthma or chronic bronchitis with bronchospasm

Raynauds

Intermittent claudication?

Bradycardia, atrio-ventricular conduction defects

TOXICITY

Fatigue

Bradycardia, decreased exercise capacity

Asthma

CNS effects

Cold extremities

Calcium channel blockers

CONTRAINDICATIONS

Severe left ventricular dysfunction (EF< 20-30%)

Second- or third-degree AV block or sick sinus syndrome (unless a functioning ventricular pacemaker is in place)

Wolff-Parkinson-White syndrome

Wide-complex ventricular tachycardia

TOXICITY

Hypotension

Headache

Bradycardia (verapamil)

Dizziness or lightheadedness

Exacerbation of congestive heart failure (verapamil)

Constipation

Peripheral edema

Heart burn

IMPORTANT

How much do medications lower blood pressure?

"Most (70%) of the blood pressure lowering effect can be achieved with the lowest recommended dose of the drugs."

1/8-1/4 max dose - **↓**SBP ~ 5 mmHg

60-70%

1/2 max dose - ↓SBP ~ 7 mmHg

90%

Max dose - ↓SBP ~ 8 mmHg

100%

Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension (Review)

Heran BS, Wong MMY, Heran IK, Wright JM

Blood pressure lowering efficacy of angiotensin receptor blockers for primary hypertension (Review)

Heran BS, Wong MMY, Heran IK, Wright JM

Blood pressure-lowering efficacy of monotherapy with thiazide diuretics for primary hypertension (Review)

Musini VM, Nazer M, Rassett K, Wright JM

Blood pressure-lowering efficacy of antihypertensive drugs and their combinations: a systematic review and metaanalysis of randomised, double-blind, placebo-controlled trials

Nelson Wang*, Abdul Salam*, Rashmi Pant, Amit Kumar, Rupasvi Dhurjati, Faraidoon Haghdoost, Kota Vidyasagar, Prachi Kaistha, Hariprasad Esam, Sonali R Gnanenthiran, Raju Kanukula, Paul K Whelton, Brent Egan, Aletta E Schutte, Kazem Rahimi, Otavio Berwanger, Anthony Rodgers

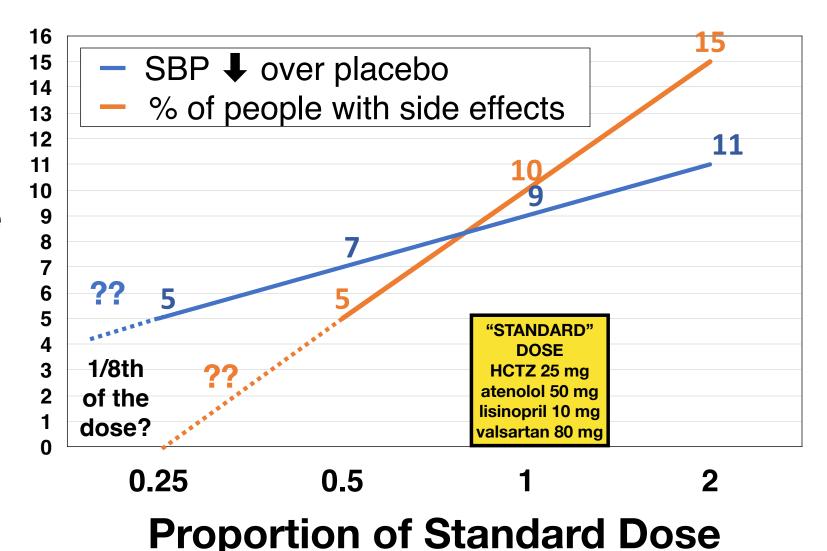
484 trials including 104,176 participants

Single med at standard dose ↓ SBP by 8·7 mm Hg

each doubling in dose conferred an additional ♣ of 1.5 mm Hg

2 meds at standard doses 14⋅9 mm Hg **↓**

each doubling of doses of both drugs conferred an additional ♣ of 2.5 mm Hg


Half standard doses gave 70% of the effect

Lancet 2025;406:915–25

IMPORTANT

Average SBP decrease over placebo and % with side effects on different amounts of a "standard dose" - each increment is a doubling of the dose

mmHg↓ and % of people with side effects

ADAPTED FROM

BMJ. 2003 Jun 28;326(7404):1427.doi: 10.1136/ bmj.326.7404.1427

All measurements have variation

	# of measurements	The Measurement Variation	If you "average" 150 mmHg all you can say is your SBP is somewhere between these ranges
Office	3 at each of 2 visits, 6 weeks apart	~+/- 10 mmHg*	140-160 mmHg
Ambulatory	continuous over 24h	~+/- 10 mmHg**	140-160 mmHg
Home monitored	1 week of 3-4 daily	~+/- 8 mmHg	142-158 mmHg

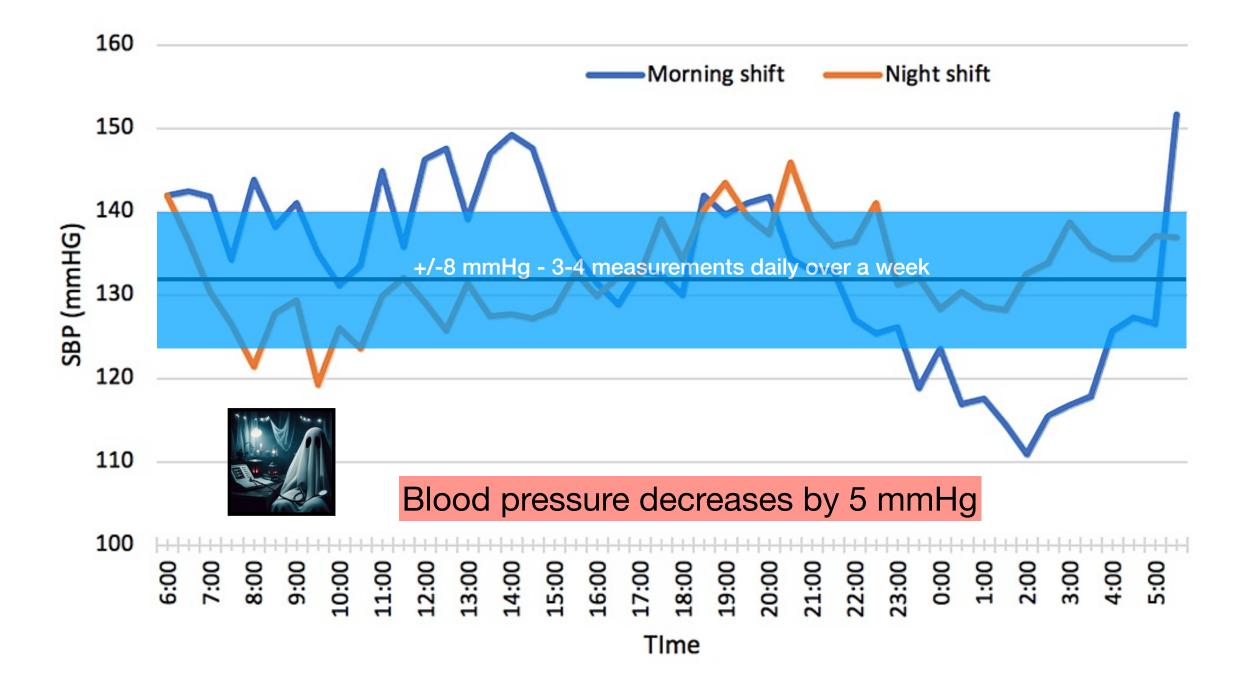
^{*} to get to ~+/-5 mmHg - 10-13 measurements are required

"attempting to **fine-tune drug doses** is probably **pointless**"

"40 office blood pressure measurements are required both before and after a prescription to be reasonably confident of **detecting a TRUE reduction of 5 mmHg**."

^{**} because only a single day

IMPORTANT


Most "treatments" reduce systolic blood pressure on average by ~5 mmHg.

So unless you are using a properly calibrated machine and doing dozens of measurements at the same time of the day both before and after making a change and then averaging them over weeks, you can't fine-tune.*

In other, words most of the changes you see are simply the "GHOSTS" of measurement variation

*Now, if you combined multiple interventions over time - eg 2 low-dose medications and lowered salt intake, lost 10kg and became physically active etc - and you see over time your SBP has dropped from say ~150 mmHg on average down to 125 to 130. With this large an average change you can likely say some of these things are responsible for the drop but you can't figure out at all which "worked"

The BP ↓ numbers are fairly consistently simple

salt ↓ or K+ substitution ↓ SBP by ~5 mmHg

1 drug at 1/4 to 1/2 of the standard dose **↓** SBP by ~ 5 mmHg

2 drugs at 1/4 to 1/2 dose **♣** SBP by ~10 mmHg

Adding a low dose 2nd medication = **DOUBLE** the effect on BP from what you would get from **DOUBLING** the dose

"placebo group" ♣ SBP by ~5 mmHg

But don't worry too much about the BP effect

Have these things been shown to ↓ cardiovascular risk

BP measurement

Office	~+/- 10 mmHg*
Ambulatory	~+-10 mmHg**
Home monitored	~+-8 mmHg

"Initial BP changes after pharmacological BP lowering are **NOT informative** for gauging individual treatment response"

"BP measures made before and after treatment initiation should **NOT be the** principal driver for clinical decision making"

Hypertension. 2023;80:608-617. DOI: 10.1161/HYPERTENSIONAHA.122.20458

"the news is that probably we do not have to trust too much on the initial blood pressure response to antihypertensive drugs as a measure of the long-term successful prevention of cardiovascular disease in patients with hypertension."

Target Shooting

Getting to a target 150, 140, 130, or 120?

This is TRICKY - for decades 140 mmHg was "the target and often it would be stated it should be 150 for the "elderly" because of concern for lowering BP too far and causing harm.

All BP guidelines recommend specific target blood pressures and they vary the targets based on age, diabetes, and other existing medical conditions of the person.

IMPORTANTLY and **FRUSTRATINGLY** guidelines often vary a lot from each other

Systolic Targets for age 60-69

150 mmHg

2020 U.S. Department of Veterans Affairs/U.S. Department of Defense

140 mmHg

2022 American Academy of Family Physicians 2022 National Institute for Health and Care Excellence 2020 International Society of Hypertension

130 mmHg

2021 European Society of Hypertension Council2017 American College of Cardiology/American Heart Association

Systolic Targets for age 70-79

150 mmHg

2020 U.S. Department of Veterans Affairs/U.S. Department of Defense

140 mmHg

2022 American Academy of Family Physicians

2022 National Institute for Health and Care Excellence

2020 International Society of Hypertension

2021 European Society of Hypertension Council

130 mmHg

2017 American College of Cardiology/American Heart Association

120 mmHg

2020 Hypertension Canada

Getting to a target 150, 140, 130, or 120?

So it seems guidelines can't agree so obviously the evidence isn't all that clear

Over the last 20 years

~5-6 decent trials have looked at the impact of attempting to get systolic blood pressures under 130 mmHg and also 120 mmHg

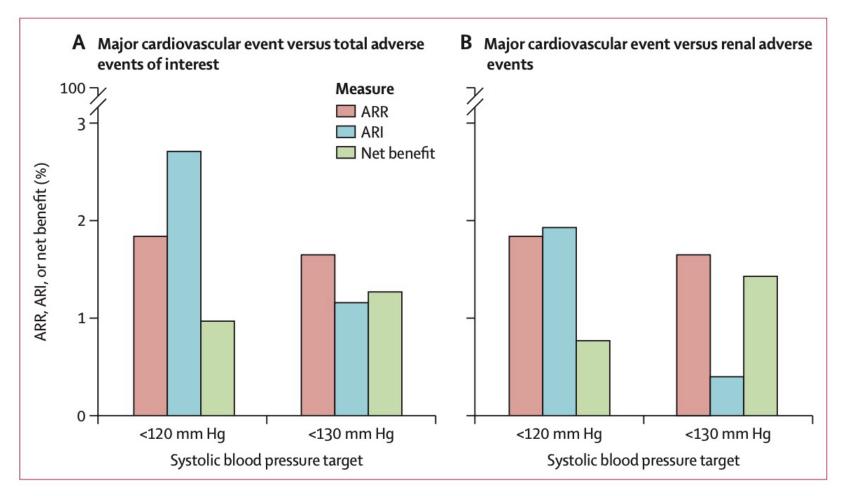
In general, in the attempt to get people to these lower targets people needed to take ~1 extra medication on top of what they were already taking

Overall, getting "lower" has led to an additional 10-15% relative benefit. Hypertension Research 2019;42:483-95

However one trial (SPRINT) in 2015, reported a 25% benefit and that is the trial that guidelines use to justify lower targets.

The SPRINT trial is **THE MAIN DRIVER** of the get to 120 mmHg recommendation

A Randomized Trial of Intensive versus Standard Blood-Pressure Control


The SPRINT Research Group*

All the Important Results from SPRINT - over 3 years

	Number of meds required	Monitoring required	Myocardial infarction, acute coronary syndrome, stroke, heart failure, or death from cardiovascular	Acute kidney injury or acute renal failure	Serious adverse events (low blood pressure/low electrolytes) classified as possibly or definitely related to the intervention
Get to 140 mmHg Actually got to 135			6.8%	2.6%	2.5%
Get to 120 mmHg Actually got to 122	On average these people took 1 more medication	4-5 more office 4-5 visits required	5.2%	4.4%	4.7%
LOWER VS HIGHER			1.6%*↓	1.8% 1	2.2% 1

^{* 5.2%} is **25%** lower than 6.8% - remember #s greater than 10% can be misleading without context

Net benefits of intensive versus standard blood pressure control in trials with different systolic blood pressure targets (<120 mm Hg and <130 mm Hg) - OVER 3 years

- (A) Major cardiovascular events versus total adverse events of interest, weighted at 1.0:3.1.
- (B) Major cardiovascular events versus renal adverse events, weighted at 1.0:1.8.

Total adverse effects = hypotension, syncope, injurious fall, arrhythmia, angio-oedema and renal adverse events

Renal adverse effects = acute kidney injury, renal failure, end-stage renal disease or dialysis, a reduction of 50% or more in estimated glomerular filtration rate in patients with chronic kidney disease at baseline, or a reduction of 30% or more in estimated glomerular filtration rate to <60 mL/min per 1.73 m² in patients without chronic kidney disease at baseline.

\$ Costs \$

Use the lowest cost blood pressure medications?
Use the lowest cost medication within a class?
Split higher dose pills - higher doses typically the same price as lower doses

No-Brainer Bottom Lines

regardless of approach - target/fire and forget

It's hard to make an asymptomatic person feel better

There is RARELY any urgency to treating risk factor numbers number blood pressures in the 160 mmHg range

When possible, discuss risk of a bad CVD outcome and the potential CVD benefits with patients

GOALS - 1/4 to 1/2 "normal" doses of the lowest priced medications and **ZERO SIDE EFFECTS**

A Simple Approach

If it was me

REGARDLESS OF THE NUMBERS

Eating - healthy food - Mediterranean Diet? - if \leq 2 alcohol drinks a day wouldn't worry Activity - do things they enjoy - "moderate" activity is all that is required for CVD benefit

ELEVATED OFFICE BP - maybe don't measure? - REMEMBER the risk is BP "at home"

Rule out white coat hypertension - ambulatory or home measurements - 20/10 diff?

IF TRULY "HYPERTENSIVE"

3/4

Sillo TANK TAN

+ 1/4

- a) Salt substitute (75%Na/25%K?) if acceptable ~80%+ people no issue Clin Hypertens 2016;22:18
- b) Then start 6.25mg HCTZ wouldn't 1 the dose
- c) If baseline was 160+? then add a low dose ACE/ARB 1/8 or 1/4 of the manufacturer's maximum recommended dose
- d) Measure blood pressure if symptoms suggestive of hypotension

Lipids

Therapeutic Class	Generic	Common Canadian brand(s)	Typical starting dose	Usual dose range
FIRST LINE				
	Atorvastatin	Lipitor / generics	10–20 mg	10-80 mg/day
	Rosuvastati	Crestor / generics	5–10 mg	5-40 mg/day
.	Simvastatin	Zocor / generics	10–20 mg	10-40 mg/day
Statin	Pravastatin	Pravachol / generics	20–40 mg	10-80 mg/day
	Lovastatin	Mevacor / generics	20 mg	20-80 mg/day
	Fluvastatin	Lescol / generics	40 mg	20-80 mg/day
NEXT				
Cholesterol absorption inhibitor	Ezetimibe	Ezetrol / generics	10 mg	10 mg/day
D001/0 : 1 !! !!	Evolocumat	Repatha	140 mg SC q2wk or 420 mg monthly	_
PCSK9 inhibitor	Alirocumab	Praluent	75–150 mg SC q2wk	_
Omega-3 (EPA)	Icosapent e	Vascepa	2 g BID with meals	4 g/day
MAYBE				
ACL inhibitor	Bempedoic Nexletol; + ezetimibe = Nexlizet/Nustendi*		180 mg	180 mg/day
siRNA (PCSK9)	Inclisiran Leqvio		284 mg SC at 0, 3 months, then q6 months	_
DON'T USE				
	Colesevelar	Lodalis	3.75 g/day (single or divided)	3.75 g/day
Bile acid sequestrant	Cholestyran	Questran / generics	4 g daily	4-24 g/day (divided)
	Fenofibrate	Lipidil / generics	145 mg	48-160 mg/day
Fibrate	Bezafibrate	Bezalip / generics	400 mg	200-400 mg/day
	Gemfibrozil	Lopid / generics	600 mg BID	600 mg BID
Niacin (ER)	Niacin	Niaspan (availability varies)/generics	500 mg HS	1–2 g HS

Canadian Lipid Meds

Measuring the correct lipids

How much do lipids impact estimated CVD risk?

How much do treatments change lipids?

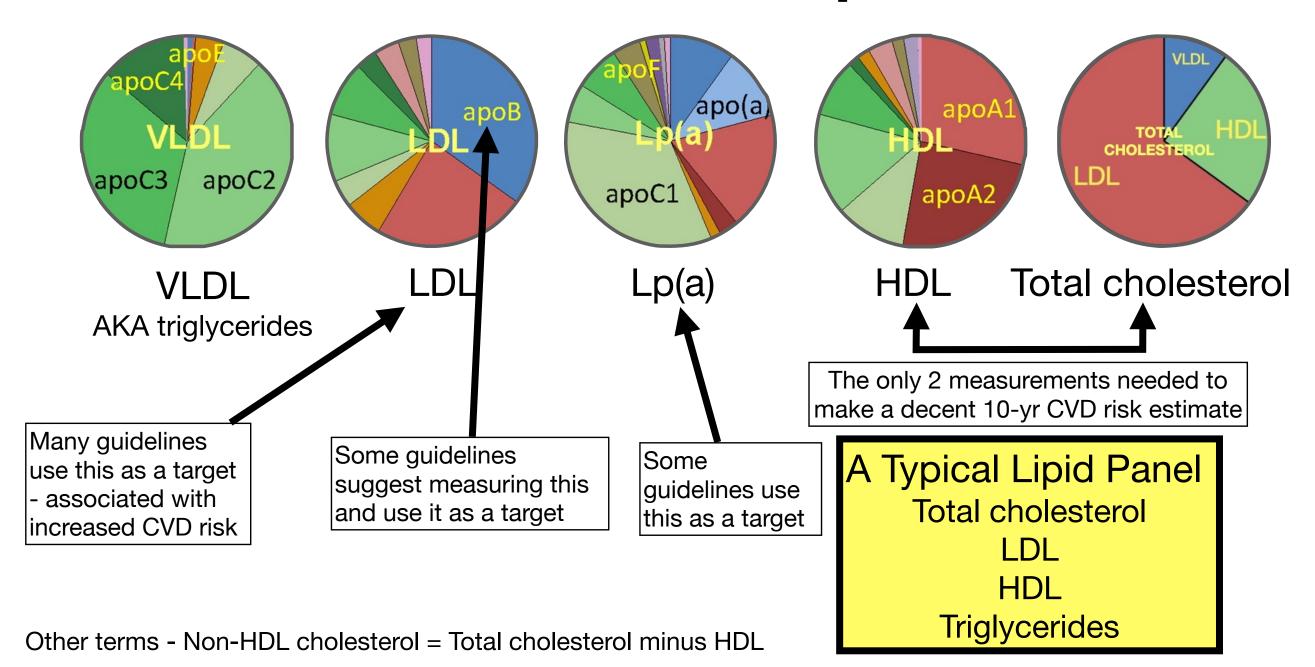
cholesterol Also HDL, VLDL ApoB, Lp(a) etc How much do treatments reduce CVD risks?

What are the harms of treatment?

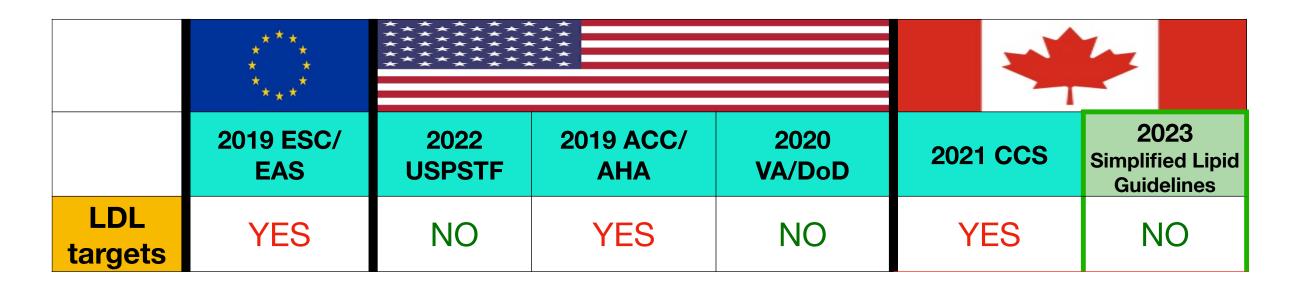
How often do you have to re-measure your lipids?

The MAIN Reasons "Cholesterol" is Measured

1. To use in conjunction with other risk factors (age, blood pressure, diabetes etc) when making an assessment of a person's cardiovascular risk



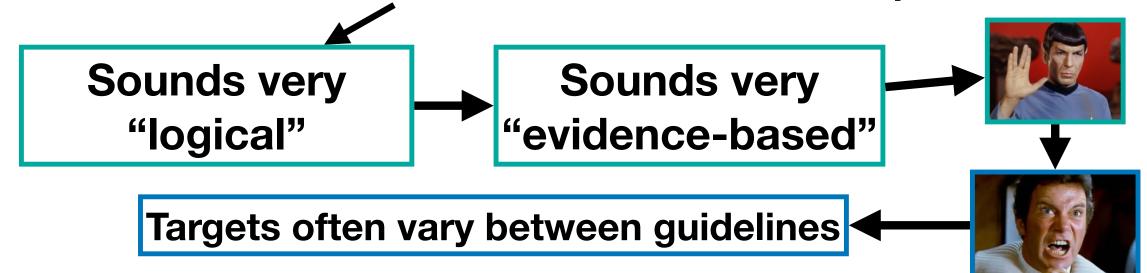
2. To see if a specific treatment (meds, food, activity) has changed a person's cholesterol


GOAL = Make it as Simple as Possible - but not Simpler

All the Different Lipids

Journal of Proteomics 2014;106:181-190

LIPIDS - 6 different guidelines


Treatment Threshold Wars

Some lipid guidelines recommend

Specific thresholds or % reductions for LDL and other lipid markers

Evidence is far from conclusive

"To date, no clear target to which LDL-C or non HDL-C or ApoB levels should be lowered is clearly identified in RCTs" Can J Car 2021;37:1129–1150

"The Task Force is aware of the limitations of some of the sources of evidence and accepts that RCTs have not examined different LDL-C goals systematically" European Heart Journal (2020) 41, 111188

Target shooting = definitely more complicated and confusing and requires more testing and possibly more worry

Elther Treat-to-Target or simply giving a High-Intensity Statin

JAMA | Original Investigation

Treat-to-Target or High-Intensity Statin in Patients
With Coronary Artery Disease

A Randomized Clinical Trial

LODESTAR

LDL 50-70 mg/dL (1.3 - 1.8 mmol/L)

High Intensity = rosuvastatin 20 mg/atorvastatin 40 mg High Intensity = double the moderate dose

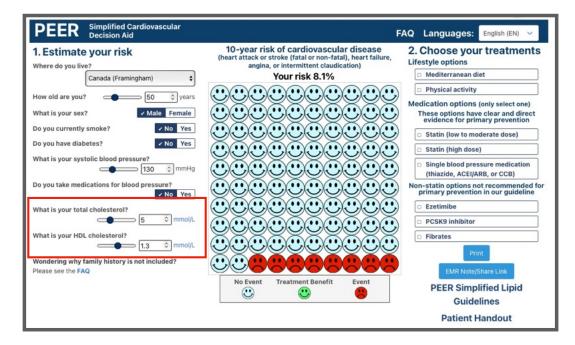
What the authors said

Conclusions

Among patients with CAD, a treat-to-target LDL-C strategy of 50 to 70 mg/dL as the goal was noninferior o a high-intensity statin therapy for the 3-year composite of death, MI, stroke, or coronary revascularization. These findings provide additional evidence supporting the suitability of a treat-to-target strategy that may allow a tailored approach with consideration for individual variability in drug response to statin therapy.

NO difference

between the groups

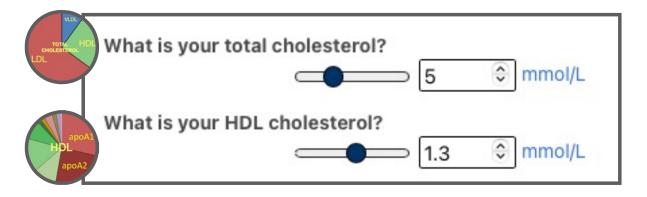

????**BUT**????

Supports a

treat-to-target strategy

April 4, 2023 JAMA 2023;329:1078-1087

Estimating your 10-year CVD risk using your lipid numbers



Risk Calculators Don't Use

"Adding Lp(a) or apo B does not meaningfully improve cardiovascular risk prediction above standard risk factors (age, sex, blood pressure, total cholesterol/HDL, diabetes, smoking)"

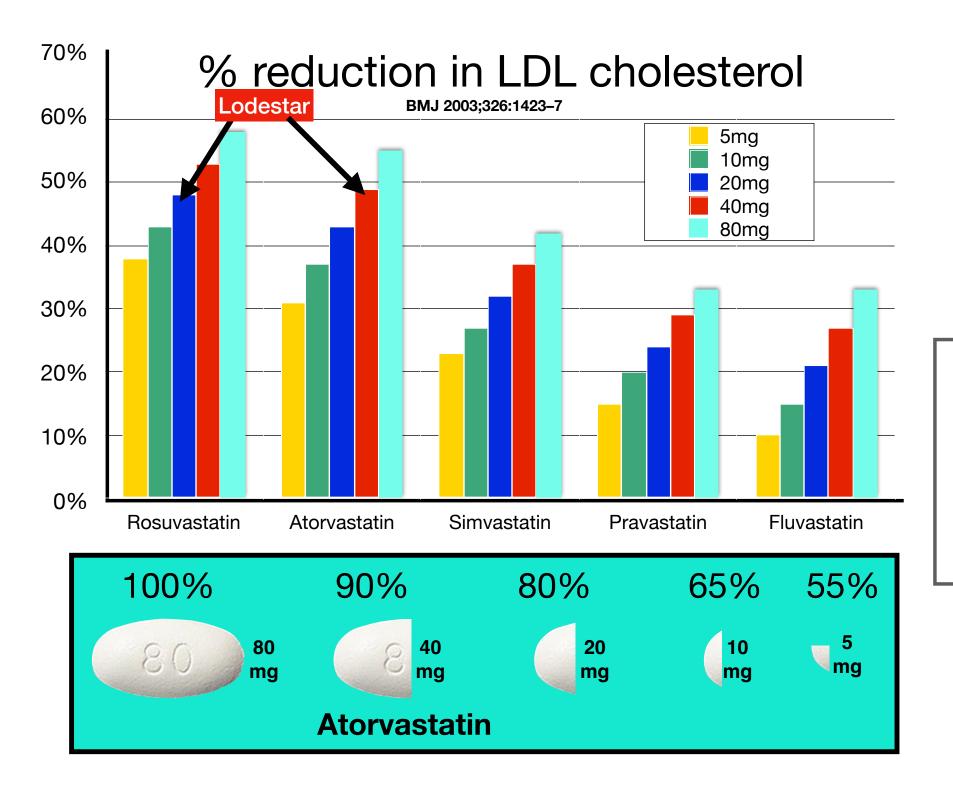
https://cfpclearn.ca/tfp343/

Most of total cholesterol is LDL

ApoB is one of the main parts of LDL

So Total Chol, LDL and ApoB measurements concentrations are highly correlated

Medication Examples


Statins	BRAND NAME		
Atorvastatin	Lipitor		
Fluvastatin	Lescol		
Lovastatin	Mevacor		
Pravastatin	Pravachol		
Rosuvastatin	Crestor		
Simvastatin	Zocor		
Pravastatin	Pravachol		
Ezetimibe	Ezetrol		
PCSK9s			
Evolocumab	Repatha		
Alirocumab	Praluent		

Lipid Medications and their relative benefit

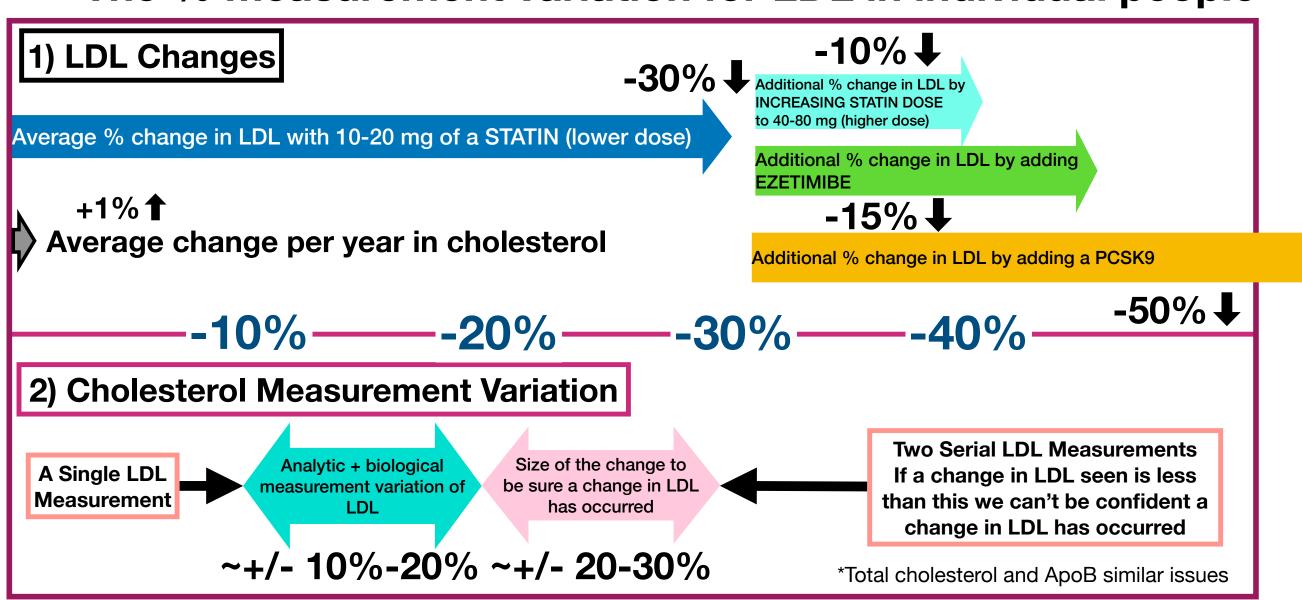
	Lipids	Heart attack/ stroke benefit
1st	Statins lower dose typically 10-20 mg	25% ↓
2nd	Statins higher dose typically 40-80 mg	an extra 10 % ↓
3rd	Ezetimibe	5% minimal evidence if you have never had a heart attack
4th	PCSK9 Inhibitors	15% Iminimal evidence if you have never had a heart attack

For statins and ezetimibe, if use generic medications and/or combos and/or split tablets
Cost should be
<\$150/year

For PCSK9s the costs are \$6,000-7,000/ year

20 mg dose
~ 30% ↓ in LDL

140-80 mg dose
get an extra ~ 10% ↓ in LDL


20 mg dose of either rosuvastatin or atorvastatin ~ 85-90% of people get at least a 30% or more reduction in LDL

Increasing to 40 or 80 mg only gets another 5% of people past that 30%

European Heart Journal – Cardiovascular Pharmacotherapy (2016) 2, 212–217 doi:10.1093/ehjcvp/pvw006

Average % decrease in LDL* from medications VS

The % measurement variation for LDL in individual people

We Remeasure to See if Lipids Have Changed

-15% THE CHANGE YOU NEED TO SEE +15%

10%↓

ADD EZETIMIBE

15%↓

- 1) as we get older
- 2) dietary changes
- 3) if we give a medication
- 4) if we increase the dose
- 5) if we add another medication

Math - Cholesterol Risk Messages

Increasing age is **BY FAR** is the "biggest" risk factor - 80-90% **OF** THE CHANGE IN RISK

Even if cholesterol increases a lot (2%/yr) over the next 10 years the impact of that change on the estimated absolute CVD risk is no more than 1-3% and the impact that additional risk has on the estimated 10-year absolute benefit from a statin is <0.5%

BOTTOM LINE - once you know a person's cholesterol, measuring it again 5-10 years later **WILL NOT** contribute to any treatment decisions **BECAUSE † AGE** is the risk issue

Higher doses and adverse effects

62 trials, 120,000 participants, followed for an average of 4 years

Statin	Muscle symptoms	Muscle disorders	Liver dysfunction	Renal insufficiency	Diabetes	Eye conditions
Atorvastatin		Not more with higher doses	~2x 1 * 80mg!	Not more with higher doses	Not more with higher doses	Not more with higher doses
Fluvastatin			Not more with higher doses			
Lovastatin	Not more with higher doses					
Pitavastatin						
Pravastatin						
Rosuvastatin						
Simvastatin						

BMJ 2021;374:n1537

Risk of increases in liver enzymes 1 from 0.5% (lower dose) to 1% (higher dose)

Risk of severe liver damage overall is ~ 1 in 17,000

https://journals.sagepub.com/doi/epub/10.1177/23247096211014050

^{*}Liver dysfunction included a rise in liver enzymes to more than three times the upper limit of normal and other diagnosed liver disorders

IMPORTANT

An Example of the Numbers

	Relative benefit	10% BASELINE 10-year risk of a heart attack or stroke	# of people who get a benefit from 10 years of "treatment"	# of people who get NO benefit from 10 years of "treatment"
Statins lower dose typically 10-20 mg	25% ↓	Revised Risk ~7-8%	2-3%	97-98%
Statins higher dose	an extra 10 % ↓	Revised Risk ~6-7%	3-4%	96-97%
Ezetimibe	5 % minimal evidence if you have never had a heart attack	Revised Risk ~6-7%	3-4%	96-97%
PCSK9 Inhibitors	15% Iminimal evidence if you have never had a heart attack	Revised Risk ~5-6%	4-5%	95-96%

If your **BASELINE** risk was **5%** then cut these numbers in **HALF?**

If your **BASELINE** risk was **20%** then **DOUBLE?** these numbers

Conclusion

What interventions have been shown ↓ cardiovascular risk?

How **BIG** is the **↓**?

Numbers are REALLY Important

Reducing the burden of treating blood pressure and lipids

Simple MAIN messages

- 1. Know the cardiovascular risk
- 2. Know the potential benefit
- 3. You will never know if the patient benefitted
- 4. You will always cause inconvenience
- 5. Always start with low doses there is almost never a hurry
- 6. Use medications that have been shown to lover CVD risk not just the risk factor
- 7. Use low doses
- 8. Cut the tablets when possible often "10mg/20mg/40mg+ tablet is a similar price so cut a "40mg"
- 9. Realise that a lot of the surrogate changes you see are the "ghost" of measurement variation

Treatments that have decent evidence of benefit

in people who have never had a cardiovascular event

Lifestyle and their relative benefits*		Medications and their relative benefit*					
Lifestyle	Heart attack/ stroke benefit	Blood pressure	Heart attack/ stroke benefit	Lipids	Heart attack/ stroke benefit	Glucose	Heart attack/ stroke/kidney benefit
Mediterranean diet	30%↓	Salt substitute 75%Na/25%K	10-15% ♣	Statins lower dose	25% ↓	Metformin	? only 1 trial
Moderate physical activity	25% ↓	Thiazide lower dose	25% ↓	Statins higher dose	an extra 10 % ↓	SGLT2's	15%↓
		ACE/ARB lower dose	25% ↓	Ezetimibe	5%↓	GLP's	15%↓
		Betablockers, calcium channel blockers	Some but less than those above	PCSK9 Inhibitors	15%↓	Sulfonlyureas, Insulin, DPP4s	0%

^{*}Regardless of their effect on the specific risk factor and all numbers are rounded