Heart Failure and A fib By the numbers BUT for individuals

James McCormack
BSc (Pharm), PharmD
Professor
Faculty of Pharmaceutical Sciences
University of British Columbia
Vancouver, BC, Canada

EVIDENCE-BASED PRACTICE
IN REALITY

What do Medications Really Achieve?

R/10

therapeuticseducation.org/npwebinars/

Heart Failure

A Quick Reflective History Lesson Why evidence prevails (usually) over opinion

BETA-BLOCKERS WERE CONTRAINDICATED IN HEART FAILURE

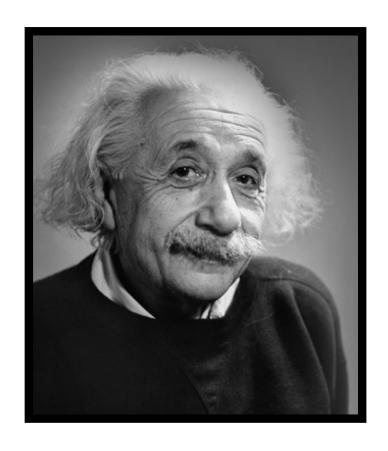
Beta Adrenergic Blocking Drugs in the Clinical Management of Cardiac Arrhythmias*

Am J Card 1966;18:444-9

3 patients with HF and sinus tachycardia given IV beta blockers - within

20 minutes - worsened heart failure

An early disturbing finding was that heart failure could be precipitated or aggravated by beta blockade. This untoward effect has been


noted by other workers.³ It presumably results from weakened contractile force of the heart following removal of the catecholamine drive. There is frequently a fall in cardiac output with prolongation of systole.⁴ This unwanted effect

arrhythmia. In the presence of myocardial disease, however, these drugs must be used with caution, since they may precipitate or aggravate heart failure. In combination with digitalis,

For the next ~25 years beta-blockers were contraindicated 1975 - case series - seven patients - some benefit 1993 - trials were done showing benefit in HF

Objectives

Make HF Simple but not Simpler!!

Looking Behind The Curtain

My Agenda

What guidelines say - and don't say

A simplified but comprehensive synopsis of the best available evidence

Risks, Benefits, Harms

A SIMPLIFIED APPROACH

SDM, there is time, ↓side effects, ↓cost, cutting pills

Tests - for HF - ECHO, BNP, POCUS

What the results mean - measurement variation

Objectives

1. Understand the basics of heart failure

Recognize how symptoms change across NYHA classes and what the main goals of therapy are.

2. Know what heart failure drugs actually do

See which meds help people live longer, feel better, or just reduce symptoms.

Understand the trade-offs — benefits, side effects, and costs.

3. Use a simple, rational approach to treatment

Learn which medications to start first and how to build combinations over time.

Appreciate that slower titration is often just as effective.

4. Make sense of test results and variability

Understand what tests (like ejection fraction or BNP) can — and can't — tell you.

Recognize that small changes often fall within natural variation.

5. Grasp the key goals in atrial fibrillation

Distinguish rate vs. rhythm control, and when each matters.

Know which drugs reduce stroke risk, by how much and the risk of serious bleeding.

6. Apply an evidence-based mindset

Balance numbers with patient values.

Focus on what actually helps people, not just what guidelines say.

New York Heart Association (NYHA) functional classification

Class I - No limitation

Ordinary physical activity doesn't cause undue fatigue, palpitations, or shortness of breath.

Example: Can climb stairs, walk briskly, or do housework without symptoms.

Clinical note: Often these patients have cardiac disease detectable on tests (e.g., reduced EF), but they're asymptomatic.

Class II - Mild limitation

Description: Comfortable at rest, but ordinary physical activity (e.g., walking up a hill, carrying groceries) causes symptoms—fatigue, dyspnea, palpitations, or angina.

Example: Feels fine sitting or walking on level ground, but climbing a single flight of stairs brings on symptoms.

Clinical note: Many "stable" ambulatory heart failure patients fall here.

Class III - Marked limitation

Description: Comfortable at rest, but less than ordinary activity triggers symptoms.

Example: Symptoms occur walking 50–100 meters, or with simple tasks like dressing or light chores.

Clinical note: Often used as the cutoff for referral to advanced therapies or palliative support.

Class IV – Symptoms at rest

Description: Symptoms occur at rest or with any physical activity; any effort increases discomfort.

Example: Short of breath sitting in a chair, can't perform any activity without fatigue.

Clinical note: Represents severe heart failure; often corresponds to patients being evaluated for transplant, LVAD, or hospice care.

Heart Failure Guidelines

HF GUIDELINES - CCS 2017 (2020/2021 updates), AHA/ACC/HFSA 2022, ESC 2021

For reduced EF, all recommend 1) ACEI/ARB/ARNIs + 2) BB + 3) MRAs + 4) SGLT2s

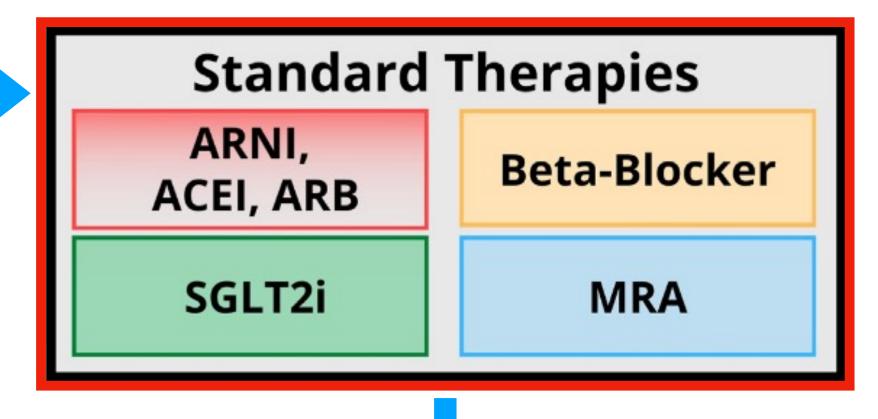
All preferentially say **ARNI** from this **ACEI/ARB/ARNIs**

Can/Amer strongly recommend **Target Doses**, Euro does so without formal recommendations

NONE propose a specific sequence to initiate - there could be 65+ different permutations

No real mention of Shared Decision-Making - HF guidelines worst implementation of SDM in cardiology

VERY UNLIKELY TO BE RCTs OF APPROACHES


Therefore modelling studies have been done using existing evidence - is there a "best" approach?

Should take into account benefit, side effects (potential to tolerate), convenience and cost - should be as simple as possible but not simpler

Standard Therapies ARNI, Beta-Blocker ACEI, ARB SGLT2i MRA **Individualized Therapies** Digoxin **Loop Diuretic** IV Iron Symptoms Dosed according to despite symptoms deficiency standard therapy **Ivabradine** Hydralazine Vericiguat Symptoms plus Nitrate Recent despite Cannot tolerate worsening of standard ARNI/ACFI/ARB or symptoms therapy with black race with despite sinus rhythm standard symptoms despite and HR ≥70 therapy standard therapy

CJC Open 5 (2023) 629e640

The Focus

Let's Start at the Very Beginning

A ballpark synopsis of all the numbers...

...from
the best
available
evidence

Goals of Therapy

Reduce mortality

Reduce morbidity

Reduce HF hospitalizations

Reduce HF exacerbations

Treat exacerbating factors

Improve symptoms, exercise tolerance and quality of life

Prevent disease progression

Treat modifiable risk factors

Meds That May Worsen Heart Failure

Drugs that cause sodium and fluid retention:

Androgens

Corticosteroids

Drugs with high sodium content

Licorice-containing products

Minoxidil

NSAIDs including selective COX-2 inhibitors and high-dose salicylates

Pregabalin

Thiazolidinediones (pioglitazone, rosiglitazone)

Negative inotropes:

Antiarrhythmic agents except amiodarone and dofetilide

Beta-blockers

Itraconazole

Non-dihydropyridine calcium channel blockers Some anesthesia medications, e.g., propofol

Cardiotoxic drugs:

Alcohol

Amphetamines

Cancer therapies: 5-fluorouracil, alkylating agents (cyclophosphamide, ifosfamide), anthracyclines (doxorubicin, epirubicin, mitoxantrone), bevacizumab, trastuzumab, tyrosine kinase inhibitors (imatinib, sunitinib) Clozapine

Ciozapine

Cocaine

Meds That "Improve" Heart Failure

Category / Class	Examples / Common Drugs in Canada		
Diuretics (Loop, Thiazide, etc.)	Furosemide, Bumetanide, Torsemide, Metolazone		
Angiotensin-Converting Enzyme Inhibitors (ACE inhibitors)	Enalapril, Lisinopril, Ramipril, Perindopril		
Angiotensin Receptor Blockers (ARBs)	Losartan, Valsartan, Candesartan		
Angiotensin Receptor-Neprilysin Inhibitors (ARNI)	Sacubitril/Valsartan (Entresto)		
Beta-Blockers	Metoprolol succinate, Bisoprolol, Carvedilol		
Mineralocorticoid Receptor Antagonists (MRAs, aka Spironolactone / Eplerenone)	Spironolactone, Eplerenone		
Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors	Dapagliflozin, Empagliflozin		
Hydralazine + Isosorbide Dinitrate	Hydralazine + Isosorbide dinitrate combination		
Ivabradine	Ivabradine		
Digoxin	Digoxin		
Other adjuncts / supportive	e.g. Iron supplementation (IV iron), anticoagulation (if AF), devices (CRT, ICD)		

Diuretics for heart failure

(some withdrawal trials - overall very weak evidence)

2-12 months - all before beta-blockers used

	Mortality (%)	HF worsening (%)	
Placebo	12	15	
Diuretics (primarily loop)	3	0	

BUT

Cochrane CD003838

"the only certainty is that

such therapies can relieve the patient's symptoms and reduce vascular congestion"

Eur Cardiol 2015;10:42-7

The BALLPARK Heart Failure Risk/Benefit/Harm Numbers

all %s are absolute numbers and are for Class 2-3 (slight to marked limitation) heart failure

1) Over 5 Years, What is the Chance of Death With No Treatment?

Death* ~50%

*SIMILAR
absolute risks and
benefits for heart
failure hospitalizations

If Treated with Medications

New Risk

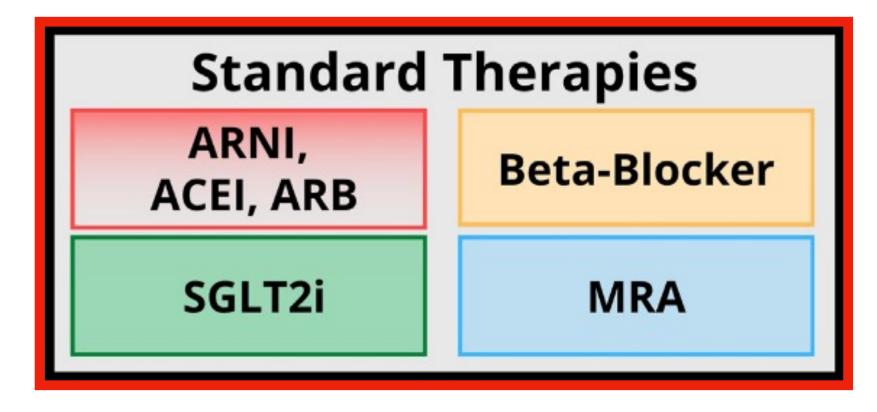
2) What is the Chance of Death with Different Medication Combinations?**						
ACEI/ARB + BB	ACEI/ARB + BB ACEI/ARB + BB ARNI + BB ARNI + BB + MRA + SGLT2 + MRA + SGLT2					
~35%	~27%	~24%	~23%	~19%		

^{**} If VOLUME OVERLOADED - tailored diuretic doses to help control weight and improve symptoms

3) What is the Cost/Yr for Medications?					
~\$250-\$300	~\$350	\$650	\$3,200	\$3,500	
Ψ200 Ψ000	~\$1,000 if eplerenone	\$1,300 if eplerenone	\$3,900 if eplerenone	\$4,200 if eplerenone	

4) How Many People Get Improved Quality of Life? % of people improved over placebo				
ACE-I Unknown				
ARB	~2%			
Beta blocker No better, or worse				
Spironolactone/ eplerenone Unknown				
ARNI (Sacubitril/valsartan) ~3% vs ACEI				
SGLT2 inhibitor	~6%			

5) What is the ABSOLUTE Benefit of Getting to Target/Higher Doses vs Lower Doses? % of people benefitted/harmed over 2-4 years						
	Mortality HF HF worsening Additional Harm of Higher Doses Dose Tolerability					
ACEI/ARB	0%	0%/~3%	~5%/~3%	Hypotension ↑ 3% Dizziness ↑ 5% Increased K ↑ 2-3% Increased Cr ↑ 3-6%	~40-50% can't tolerate	
Beta blocker	0%	0% 0% Dizziness114% TARGET doses				
Other Medications	INDICTION I					


6) What are the Side Effects of These Medications? % of people over placebo				
ACEI/ ARB	Low blood pressure 5% Dizziness or fainting 7% Decrease in kidney function 3% High potassium 3% Cough 6% - just ACEI Angioedema 0.2% - just ACEI	Also consider the		
Beta blocker	Slow heart rate 3% Dizziness 4% Diarrhea 4% Claudication-type leg pain 2%	inconveniences of getting and		
MRA Spironolactone /eplerenone	Decrease in kidney function 2% High potassium 7% Breast growth/tenderness (spironolactone only) 9%	taking the medications		
ARNI (Sacubitril/ valsartan)	Low blood pressure causing symptoms (lightheadedness, dizziness, fatigue, etc.) 5% vs. ACEI	PLUS the additional monitoring		
SGLT2 inhibitor	No differences from placebo in heart failure trials In people with diabetes: Bothersome genital fungal infections 5% Diabetic coma (diabetic ketoacidosis) 0.2%	9		

Now What?

Category / Class	Pros	Cons
Diuretics (Loop, Thiazide, etc.)	Best for acute symptoms	Hypovolemia, hyonatremia, hypokalemia if over diuresed, no mortality benefit
Angiotensin-Converting Enzyme Inhibitors (ACE inhibitors)	Reduces mortality and hospitalizations	Cough 15%, hyperkalemia, hypotension, worsened renal function
Angiotensin Receptor Blockers (ARBs)) Equals ACEI without a cough - also evidence on QOL (2%)	
Angiotensin Receptor-Neprilysin Inhibitors (ARNI)	Reduces mortality and hospitalizations and improves QOL (3% over ACEI)	Expensive - save money just use an ARB
Beta-Blockers	Reduces mortality and hospitalizations	Bradycardia, hypotension, fatigue, contraindicated in asthma
Mineralocorticoid Receptor Antagonists (MRAs, aka Spironolactone / Eplerenone)	Reduces mortality and hospitalizations	Hyperkalemia, gynecomastia
Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors	Reduces mortality and hospitalizations and improves QOL (6%)	Genital yeast infection, volume depletion, ketoacidosis

The Focus

BUT HOW DO WE DO THIS?

Present Guideline Recommendations Based on EF%

Ejection Fraction	Typical Categories	YES		MAYBE (Weaker evidence)		AVOID
<40%	Reduced	ARNI, ACEI, ARB	Beta-Blocker	Get to Target Doses		NI/A
< 40 70	neduced	SGLT2i	MRA			N/A
10 100/	Mildly			ARNI,		
40-49%	reduced	SGLT2i	MRA	ACEI, ARB	Beta-Blocker	N/A
≥ 50%	Preserved	SGLT2i	MRA	ARNI, ACEI, ARB		Unless other reasons for use Vent' arrhythmia, angina AVOID Beta-Blocker

Daily Dose, Guidelines, Evidence

				TO	TAL DAIL	Y DOS	E - multi	ples	
	Available Medications	Guideline suggested times per day	1x	2x	4x	6х	8x	16x	24x
ACEI	Enalapril	2	2.5	5			20	40	60
ACEI	Fosinopril	1	5	10			40		
ACEI	Lisinopril	1	2.5	5			20	35*	
ACEI	Perindopril	1	2	4	8		16		
ACEI	Quinapril	2	5		20	<u>i</u>			
ACEI	Ramipril	1,2	1.25	2.5	5		10		
ACEI	Trandolapril	1	0.5	1	2		4		
ARB	Irbesartan	Not in a guideline					100	10.00 E	
ARB	Candesartan	1	4	8	16		32 is thi	correct	
ARB	Losartan	1	25	50		150			
ARB	Valsartan	1,2	40	80			320		
ARB	Sacubitril-valsartan	2	50/50	100/100	200/200				
ВВ	Carvedilol	2	6.5		20*		50	100	
ВВ	Carvedilol CR	1	10				80	<u> </u>	
ВВ	Bisoprolol	1	1.25				10		
ВВ	Metoprolol (CR/XL)	1	12.5	25				200	
ВВ	Nebivolol	1	1.25				10		
SGLT2i	Dapagliflozin	1	10				5	6	
SGLT2i	Empagliflozin	1	10	25*					
SGLT2i	Canagliflozin	1	100		300*				
MRAs	Spironolactone	1	12.5	25	50				
MRAs	Eplerenone	1	25	50					

20/21 meds HAVE target dose recom'

17/22 meds HAVE NO dose trials

3 "higher" dose meds (6-16x 1)

have shown 1 benefit

but also 1 harm

enalapril 20, lisinopril, losartan

3 "higher" dose meds have shown no benefit candesartan, carvedilol, enalapril 40/80

TABLE KEY

Guideline Suggested Starting Doses
Guideline Suggested Target Doses
Target/higher dose tested - ↑ benefit
Target/higher dose tested - NO ↑ benefit
Drugs with no trials of target doses
* = number not exactly the multiple

The BALLPARK Heart Failure Risk/Benefit/Harm Numbers

all %s are absolute numbers and are for Class 2-3 (slight to marked limitation) heart failure

~50% death and ~50% hospitalization in 5 years

*SIMILAR
absolute risks and
benefits for heart
failure hospitalizations

If Treated
with
Medications
New Risk

** If VOLUME OVERLOADED - tailored diuretic doses to help control weight and improve symptoms

Most of the benefit is from 4 "low" priced medications

~\$250-\$300	~\$350	\$650	\$3,200	\$3,500
	~\$1,000 if eplerenone	\$1,300 if eplerenone	\$3,900 if eplerenone	\$4,200 if eplerenone

At most, ~5% get a QOL benefit						
ACE-I Unknown						
ARB	~2%					
Beta blocker	No better or worse					
Spironolactone/ eplerenone	Unknown					
ARNI (Sacubitril/valsartan) ~3% vs ACEI						
SGLT2 inhibitor ~6%						

4-16 X toose - ACEI/ARB = hosp' benefit no mort' benefit - but then also harm
BB nothing but harm
~50% can't tolerate toose

	Mortality	HF Hospitalization	HF worsening	Additional Harm of Higher Doses versus Lower Doses	Dose Tolerability	
ACEI/ARB	0%	0%/~3%	~5%/~3%	Hypotension ↑ 3% Dizziness ↑ 5% Increased K ↑ 2-3% Increased Cr ↑ 3-6%	~40-50% can't tolerate	
Beta blocker	0%	0%	0%	Dizziness ↑14%	TARGET doses	
Other Medications	Not studied					

All the meds have side effects and inconveniences

ACEI/ ARB	Low blood pressure 5% Dizziness or fainting 7% Decrease in kidney function 3% High potassium 3% Cough 6% - just ACEI Angioedema 0.2% - just ACEI	Also consider the
Beta blocker	Slow heart rate 3% Dizziness 4% Diarrhea 4% Claudication-type leg pain 2%	inconveniences of getting and taking the medications PLUS the additional monitoring
MRA Spironolactone /eplerenone	Decrease in kidney function 2% High potassium 7% Breast growth/tenderness (spironolactone only) 9%	
ARNI (Sacubitril/ valsartan)	Low blood pressure causing symptoms (lightheadedness, dizziness, fatigue, etc.) 5% vs. ACEI	
SGLT2 inhibitor	No differences from placebo in heart failure trials In people with diabetes: Bothersome genital fungal infections 5% Diabetic coma (diabetic ketoacidosis) 0.2%	

Summary of efficacy of heart failure pharmacotherapy across ejection fraction categories

Medication class	HFrEF (LVEF ≤40%)	HFmrEF (LVEF 41-49%)	HFpEF (LVEF ≥50%)				
Death from any cause, relative risk reduction*							
ACEI/ARB	~20%	\leftrightarrow					
ARNI (vs ACEI/ARB)	~15%	\leftrightarrow					
Beta-blocker	~35%	~40%	?				
MRA	~25%	\leftrightarrow					
SGLT2I	~15%	\leftrightarrow					
Heart failure hospitalization, relative risk reduction*							
ACEI/ARB	~25%	~25%	\leftrightarrow				
ARNI (vs ACEI/ARB)	~20%	\leftrightarrow					
Beta-blocker	~35%	\leftrightarrow					
MRA	~35% ~20%		0%				
SGLT2I	~30%	~25%					
Quality of life, absolute % of people with an increase of a clinically-important							
improvement ACEI/ARB	+4%)				
ARNI (vs ACEI/ARB)	+3%						
Beta-blocker	↔	↔ ?					
MRA	?	\leftrightarrow					
SGLT2I	+6%						

There is Time To Titrate

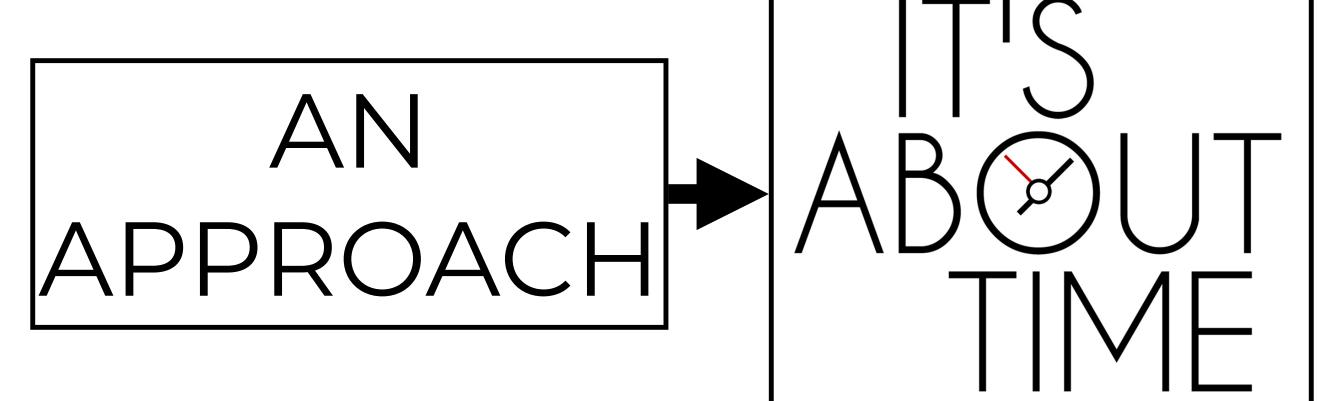
what do you lose if you did nothing other than treat with a diuretic

Over 5 years

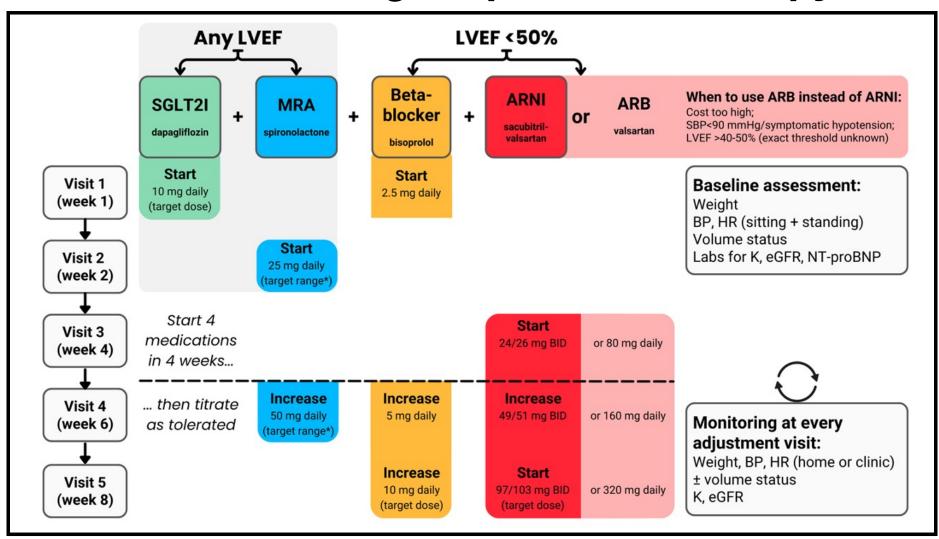
5-year risk
Death ~50%
Hospitalization for HF ~50%

Risk with max meds and doses Death ~20% Hospitalization for HF ~20% **+**

50 minus 20 = lose $\sim 30\%$ absolute benefit over 5 years 30%/60 months = lose $\sim 0.5\%$ absolute benefit per month

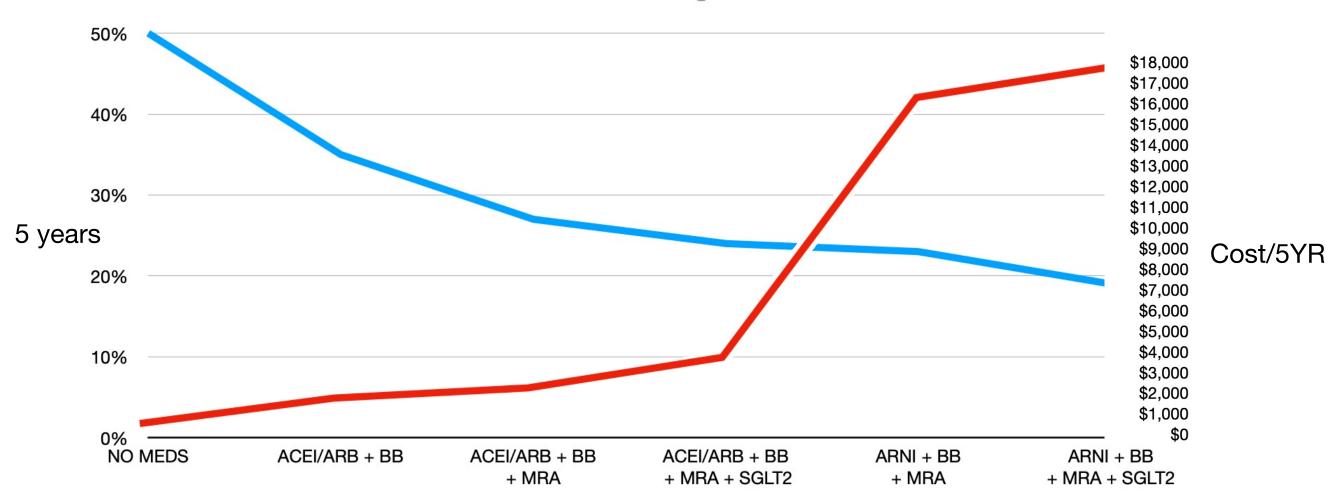

Over 1 year

1-year risk
Death ~20%
Hospitalization for HF ~8%


Risk with max meds and doses Death ~??% Hospitalization for HF ~8%

If benefit front-loaded - use 1 year

20 minus 8 = lose ~12% absolute benefit over 1 year 12%/12 months = lose ~1% absolute benefit per month



Simple sequencing: a rational and generalizable approach to starting, titrating, and monitoring HF pharmacotherapy

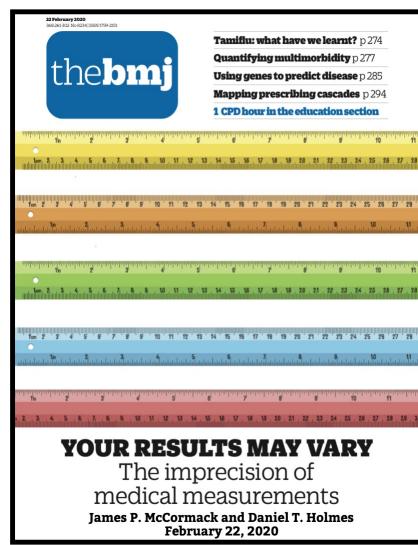
Unpublished - created by RD Turgeon, BJ MacDonald, NM Hawkins, JP McCormack

Death/Hosp — Cost

Tests

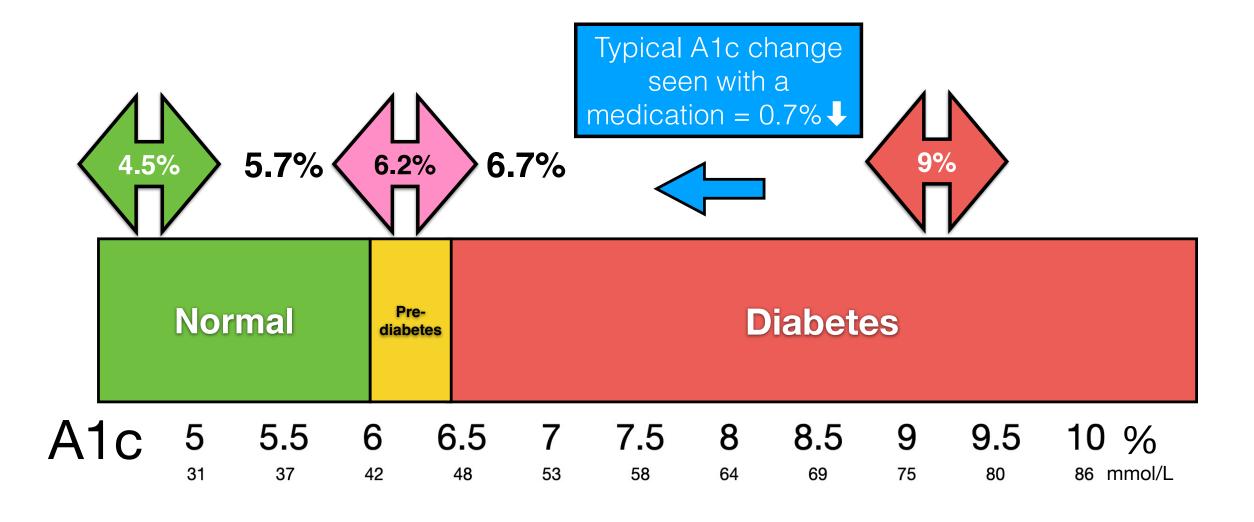
"Only do a test if the result will influence management" Lots of people

"If you aren't sick, you just haven't had enough tests" Bob Rangno, MD


Echocardiogram

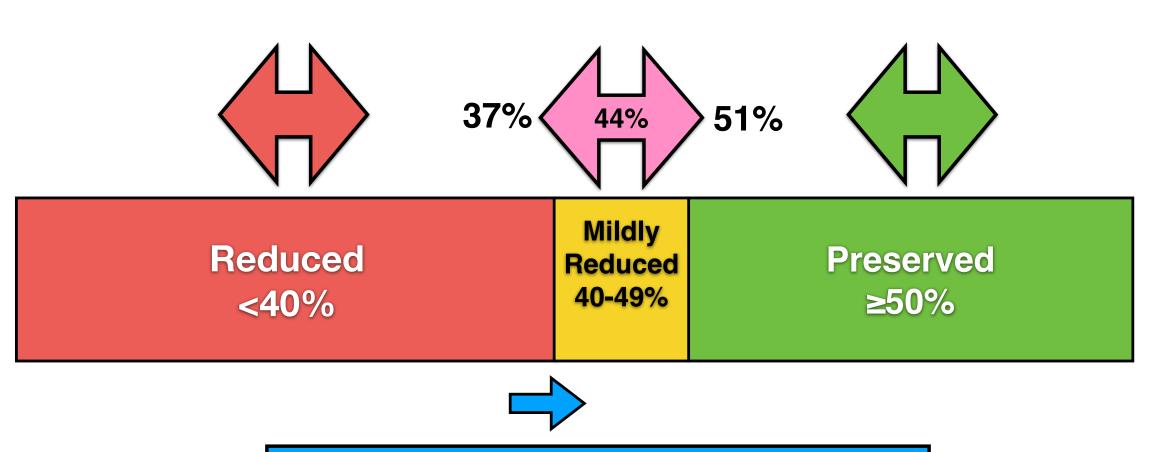
The GOLD standard for diagnosing heart failure

BUT


Your Results May Vary: The Imprecision of Medical Measurements

Every test has...

...measurement variation


Diabetes Measurement Issues - A1c

Echo Ejection Fraction% is at least +/- 5 to 7%

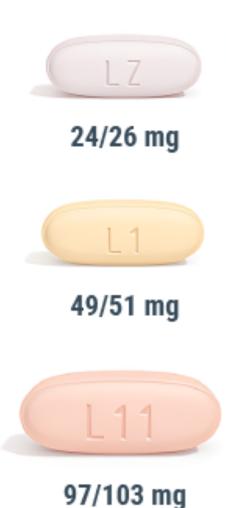
"An LVEF of 44% assessed on a Monday could be 37% on Wednesday and 51% on Friday, leading a physician to diagnose HFrEF, HFmrEF, and HFpEF in the same patient within a 7-day period"

Echo Ejection Fraction% at least +/-5 to 7%

Typical EF change seen with a medication = ~5% ↑

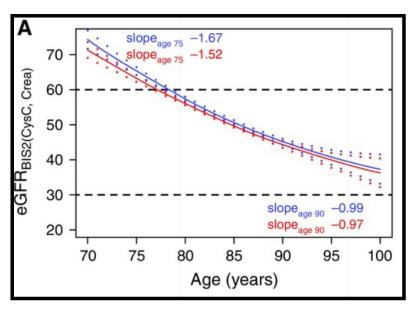
Echo Ejection Fraction A category redo?

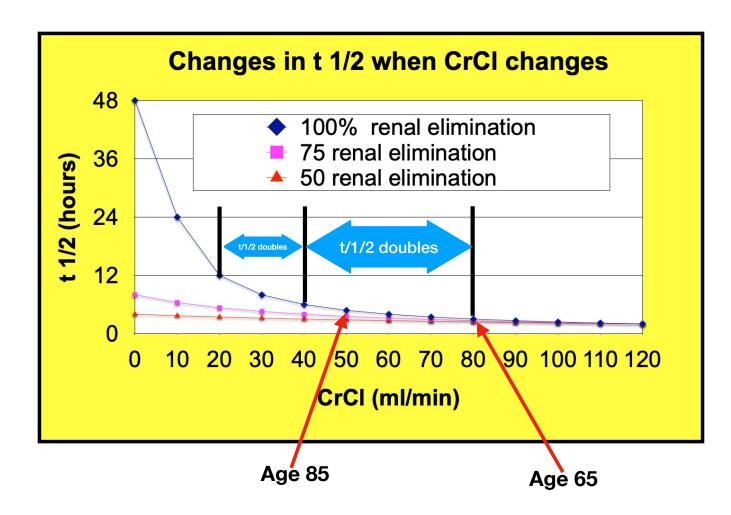
Reduced <35%


Mildly Reduced >35% to <60%

Normal ≥60%

J Am Heart Assoc. 2024;13:e032257. DOI: 10.1161/JAHA.123.032257 J Am Heart Assoc. 2024;13:e034642. DOI: 10.1161/JAHA.124.034642 2


Entresto - Cutting Pills


into 1/2s is easy - 1/4s are a !@#\$% mess

Elderly = "sustained release"

Clin J Am Soc Nephrol. 2022 Aug;17(8):1119–1128

ACEI - primarily renal ARB - primarily hepatic Bisoprolol - 50/50 Dapagliflozin - primarily renal

Sodium restriction

TOOLS FOR PRACTICE #368 | June 24, 2024

Sodium Restriction in Heart Failure: Beneficial or pouring salt in the wound?

CLINICAL QUESTION

Does sodium restriction improve outcomes in patients with chronic heart failure?

BOTTOM LINE

In patients with chronic heart failure, restricting dietary sodium to <2 grams/day does not reduce death or hospitalization compared with 2-3 grams/day.

Top Tips for HF and Meds

Medications - more = better

20%+ absolute benefits but STILL "most" get no mortality/hosp' benefit

You do have time!!

Lower dose = 90+% of the benefit

Target/High doses - more (not BB) = a bit better but also a bit worse

Higher price = a bit better - split all tablets in 1/2

IMHO - side effects unacceptable

Top Tips for HF and Meds

If hypotensive (symptom) - over-diuresed? - not necessarily from the "BP" meds?

If newly hypotensive - with meds - still think about over-diuresed?

After discharge from hospital - reassess volume and vitals a week after discharge - because often aggressive treatment early so not sure of SS when at home on diuretics

If still slightly fluid overloaded - give SGLT2 - better than 1 dose of diuretic - SGLT2

6% get 1 QOL regardless of EF

New HF elderly - 60%+ are >40% EF

If post MI and if on BB - stop as if EF >~50% as no benefit on QOL CJC Open 6 (2024) 639e648

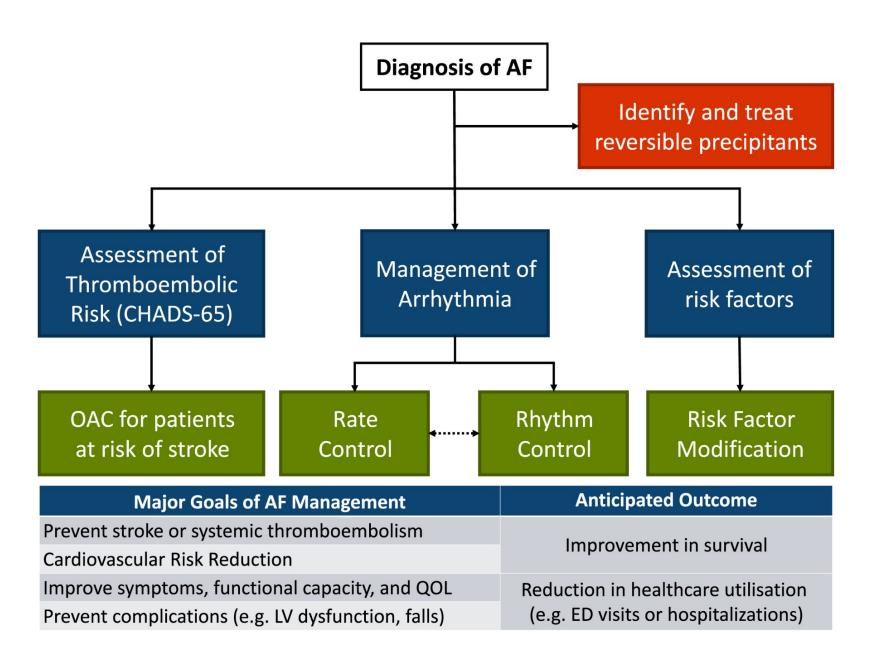
"The answers are all out there, we just need to ask the right questions."

Oscar Wilde

A fibrillation

primarily the stroke reduction part

Goals of Therapy


In the acute stage - restore sinus rhythm; rhythm control should always be possible in re-entrant arrhythmias (Atrioventricular RT or AV-Nodal RT)

Rhythm control may not be possible or desirable in some patients - in these situations, the goal is to control the rate of the supraventricular tachycardia

Prevent arrhythmia recurrence or substantially reduce the overall arrhythmia burden

Reduce the risk of thromboembolic events (stroke) in patients with AF/atrial flutter

2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation

Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation

303 adults (mean age ≈ 58 yr; ≈ 70 % male) with symptomatic, untreated paroxysmal AF

CANADIAN TRIAL	Recurrence (%)	Symptom recurrence (%)	Serious adverse events (%)	Hospitalization (%)
Cryoablation	43	11	3	3
Antiarrhythmic drugs*	68	26	4	8

^{*}flecainide, sotalol, propafenone, dronedarone

Effect of alcohol reduction on recurrent A fib

One RCT where they were randomized to oral and written advice to abstain from alcohol with monthly follow-up followed for 6 months

140 patients with A fib for ~6 years 16 drinks/week avg	Drinks/week	Recurrence of Atrial fibrillation	A fib related hospital admissions	Weight loss
ADVICE	2 61% complete abstinence	53%	9%	3.7kg less than control
NO ADVICE	13	73%	20%	

Meds That Can Cause A fib

Very common/frequent (≥10%) Cardiovascular drugs Acetylcholine test: 8-17% Adenosine: 1-15% Aminophylline/theophylline: 2.5-13%; OR 1.8 (95% CI 1.0-3.9) β-adrenergic agonists (in patients undergoing cardiac surgery): 39% with dopamine and 44% with dobutamine vs 20% with an α-adrenergic agonist (phenylephrine) Dobutamine: 0-18% Dopamine, renal doses: 23-39%; OR 3.35 (1.38-8.12) Flecainide: 6-13.5%* Propafenone: 9-12%* Common (1-<10%): Cardiovascular drugs Amiodarone: 1.3%* Arbutamine: 1% Dobutamine (0.4-1.2% for stress echocardiography; 6-7.6% in patients with HF) Enoximone: 8.3% Icosapent ethyl: HR 1.5 (1.14-1.98); in patients with previous AF: HR 1.96 (1.19-3.21) Ivabradine: HR 1.23 (1.08-1.41) Levosimendan: 9% (low cardiac output after surgery: 12%) Milrinone: 4.6-5.0%; OR 4.86 (2.31-10.25) n-3 polyunsaturated fatty acids: HR 1.35 (1.1-1.66) Verapamil: 5% (in patients with HCM) Non-cardiovascular drugs Drugs acting on the central nervous system Antipsychotics: chlorpromazine 1.96 (1.44-2.67); clozapine aOR 2.81 (1.64-2.39); olanzapine 1.81 (1.44-2.88); prochlorperazine 1.22 (1.15-1.29); quetiapine 1.55 (1.25-1.92); risperidone 1.25 (1.00-1.55) Cannabis: HR 1.35 (1.30-1.40) **Empty Cell** Lacosamide: 1.5-2.3% **Empty Cell** Mitoxantrone: 1.4% **Empty Cell** Morphine: HR 4.37 (3.56-5.36)

Opioids (hydrocodone, propoxyphene, tramadol): HR 1.35 (1.16-1.57)

Anti-inflammatory drugs

Oral corticosteroids 1.8-5.6%; OR 2.7 (1.9-3.8)

High-doses of corticosteroids: 5.8%; ≥ 7.5 mg of prednisone equivalents: OR 6.07 (3.90-9.42)

Non-aspirin NSAIDs: OR 1.33 (1.26-1.41)

Diclofenac: OR 1.2 (1.1-1.4): paracetamol 1.4 (1.2-1.6): ibuprofen 1.1 (1.0-1.3): naproxen 1.3 (1.0-1.7)

COX-2 inhibitors: HR 1.16 (1.05-1.29); etoricoxib 1.35 (1.19-1.54)

Empty Cell

Orphenadrine: 2.5% Bisphosphonates

Yearly i.v. zolendronic acid: OR 1.30 (1.18-1.43); alendronate: OR 1.86 (1.09-3.15); nitrogen containing

bisphosphonates: aHR 1.55 (1.03-2.39)

Levothyroxine (>0.075 mg/d): aOR 1.29 (1.23-1.35)

Respiratory drugs

Antimuscarinics: OR 1.2 (0.9-1.5)

Long-acting β2-agonists: 1-2.7%; OR 2.54 (1.59-4.05)

Uncommon (<1%)

Non-cardiovascular drug

Fingolimod (0.22%), ipratropium (0.5%), salbutamol, tiotropium (<1%)

Anticancer Drugs

Alkylating agents

Cisplatin 6.6-32% (intrapericardial/intrapleural)

Cisplatin+cetuximab 4.5%

Cyclophosphamide 2.2% (6.4% plus busulfan)

Dacarbazine Ifosfamide 9.6%

Melphalan high-dose 6.9-13% (22.5% in elderly)

Antimicrotubules/

Taxanes Docetaxel

Paclitaxel 0.18-< 2% **Anthracyclines**

Daunorubicin

Doxorubicin 1.4-10.3%

Idarubicin

Endocrine therapy

Abiraterone 0.7-2.6% (grade 3: <1%)

GnRH analogues 16% Leuprolide 0.73% Fluoropyrimidines

Azacitidine+lenalidomide 2.5-5%

Capecitabine 1.1% (up to 31% if prior cardiac comorbidities)

Clofarabine 7.4-18.7%

Decitabine 10% (15% in patients with renal dysfunction)

Fluorouracil 0.4-1.7% (0.4-6.5% + cisplatin; 5.1% + sorafenib) Ribociclib

Gemcitabine 8.1%

Histone deacetylase inhibitors

Romidepsin 4.6% Venetoclax 4.6-5.6%

Immune checkpoint inhibitors

All 0.3-7.6% (30% with ICI-related cardiotoxicity)

Darvalumab 0.8-2.8%

Ipilimumab

Nivolumab 1.6-4% Pembrolizumab 1.7% Tremelimumab 0.19% Immunomodulating agents

Aldesleukin (Interleukin-2) High-dose: 4.2-8%. Low-dose: 1.5%.

Dexamethasone 0.9%

Lenalidomide

Lenalidomide+dexamethasone 1.9-3.8% (6.6% in patients >65 years)

Pomalidomide Temsirolimus 1%

Thalidomide+ dexamethasone 4.7% (3.4% with dexamethasone+placebo)

Monoclonal antibodies Alemtuzumab < 1% Isatuximab 4.6% Obinutuzumab Ofatumumab1% Rituximab1-1.5%

Trastuzumab 0.4-0.6% (19% in women with cardiac comorbidities)

Proteasome inhibitors Carfilzomib 0-3.9% Bortezomib 3.3-6.8% Tyrosine kinase inhibitors

Acalabrutinib 4-9.4% (grade \geq 3: 1.3%)

Bosutinib 0.34-2.4%

Ibrutinib 4.5-29% (up to 38% at 2 years follow-up)

uPPR: 5.96 (5.70-6.23) aROR: 8.68 (8.14-9.26)

Idelalisib Midostaurin Nilotinib 0.1-1.2% Osimertinib

Pirtobrutinib 2.7% (grade \geq 3: 1%)

Ponatinib 0.44-5.1%

Trametinib

Zanubrutinib 1.8-5.2% (grade ≥ 3: 1%)

VEGF inhibitors: pazopanib, sorafenib, sunitinib 2.7-3.5%

Vemurafenib 1.5% Miscellaneous drugs Interferon-alpha2 6.8-12%

T-cell therapy

CD19-directed CAR T 0.6-11.1% Axicabtagene ciloleucel 2.4% Idecabtagene vicleucel 1.6-10.3%

Tisagenlecleucel 1.4%

Bispecific T-cell engagers (BiTEs)

Blinatumomab

Meds Used For A fib

Category / Class	Examples / Common Drugs in Canada
Rate Control	Metoprolol, Bisoprolol, Carvedilol, Atenolol, Propranolol, Diltiazem, Verapamil, Digoxin
Rhythm Control (Antiarrhythmic Drugs)	Class IC: Flecainide, Propafenone Class III: Amiodarone Class III: Sotalol Class III: Dronedarone
Anticoagulants (Stroke Prevention)	Warfarin (INR 2–3) DOACs: Dabigatran, Rivaroxaban, Apixaban, Edoxaban Antiplatelets: Aspirin, Clopidogrel

2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation

n your patient with atrial fibrillation, which of the following stroke or bleeding risk factors are present?			
Stroke Risk (CHA2DS2-VASc)			
Age [©] <			
TIA or stroke (at any time in the past)	CHF/LV dysfunction (diagnosed at any time in the past)	0	
Prior MI, peripheral artery disease, or aortic plaque	Hypertension (controlled or uncontrolled)		
Female -	Diabetes Type I or II (controlled or uncontrolled)		
CHA2DS2-VASc SCORE (0- 9): Major Bleeding Risk (HAS-BLED)			
Abnormal renal function (dialysis, SCr>200 mcmol/L, or transplant)	History of labile INR (time in therapeutic range <60%)		
Hypertension (SBP>160mmHg)	Current use of alcohol (>8 drinks per week)		
Abnormal liver function (cirrhosis or liver enzymes >3x ULN)	Currently taking antiplatelet drug or NSAID		
History of major bleeding (any cause)	HAS-BLED SCORE (0-9):	0	

PERCENT PER YEAR			
	annual risk of stroke/embolism	annual risk of major bleeding (intracranial bleeding, bleeding requiring hospitalization, HgB decrease of > 20 g/L, or need for transfusion secondary to bleeding)	
NO THERAPY	4.3%	0.6%	
ASPIRIN	3.4%	1.1%	
WARFARIN	1.4%	2.2%	
DABIGATRAN 110	1.4%	1.8%	
DABIGATRAN 150	0.9%	2.2%	
RIVAROXABAN	1.4%	2.2%	
APIXABAN	1.1%	1.5%	

http://www.sparctool.com

Meds That Can Reduce Stroke Risk

Therapy	Relative risk reduction (vs no therapy)
Aspirin (ASA)	34%
ASA + clopidogrel	44%
Warfarin (INR 2-3)	66%
Dabigatran 110 mg bid	66%
Dabigatran 150 mg bid	78%
Rivaroxaban 20 mg qd	66%
Apixaban 5 mg bid	74%
Edoxaban 30 mg qd	66%
Edoxaban 60 mg qd	71%

https://www.sparctool.com/

	Warfarin	DOACs (avg across Apixaban, Rivaroxaban, Dabigatran, Edoxaban)
Therapeutic range time (INR 2–3)	60–65% of time	Not applicable
Onset of action	2-4 days to therapeutic effect	2–4 hours
Offset after stopping	3–5 days	1–2 days
Side effects	Bleeding	Bleeding
Drug interactions (clinically relevant)	> 100 known	≈ 20–30 known
Food interactions (vitamin K related)	YES	None
Lab monitoring	Every 1-4 weeks	None routine
Cost (Canada, 2025)	90 days ≈ \$20	90 days ≈ \$100 - dabigatran \$250
Renal dose limits (eGFR mL/min)	Usable down to < 15	Generally avoided < 30
Half-life	36–42 h	8–15 h
Reversal availability (typical hospital)	> 95%	Possible but usually not needed

DOACs*	Pros	Cons
Dabigatran 110, 150 mg	150 mg ~0.5-1%	Twice daily 150 mg ~0.5% 1 bleeding risk over other DOACs More expensive
Rivaroxaban	Once daily	
Apixaban	~0.5% ↓ in bleeding risk versus D and R	Twice daily
	Once daily 30 mg ~ 1% ↓ in bleeding risk versus D and R	

^{*} but NO head-to head trials (all studied against warfarin) so outcome differences not definitive