EVIDENCE APPRAISAL CONTENT

Evidence-Appraisal Boot Camp

James McCormack
B.Sc.(Pharm), Pharm.D.
Professor, Faculty of Pharmaceutical Sciences
University of British Columbia, Vancouver, BC, Canada

Roughly half (the best part) of this course was initially developed by Mike Allan,
Practical Evidence for Informed Practice,
ACFP, U of A Dept of Family Med

For Course Material Please Go To https://therapeuticseducation.org/boot-camp

Course Material

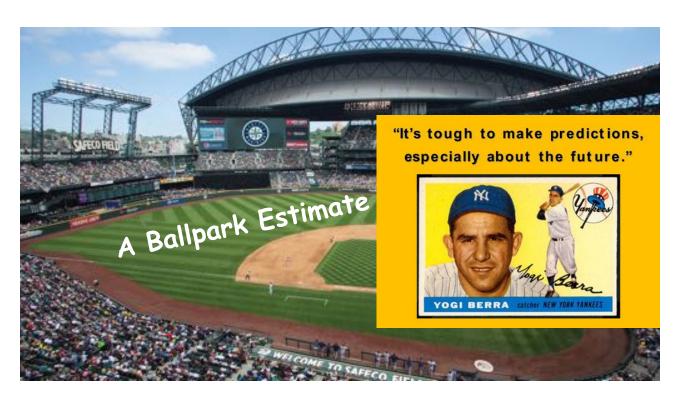
- I.Evidence Appraisal Content
- 2. Evidence Appraisal Work Book

For Course Material Please Go To https://therapeuticseducation.org/boot-camp

The Schedule

- Welcome and philosophy
- How to critically appraise an RCT in 10 minutes
- You do "it" in pairs
- Homework review
- Meta-analyses
- Numbers, numbers, numbers workbook
- Lunch
- Meta-analysis workbook
- Please ask questions at any time this is your chance to make mistakes/have things clarified/ OK to go off topic somewhat

Healthcare should be all about Figuring out AND Explaining about


The Chance of Something Happening WITH NO TREATMENT

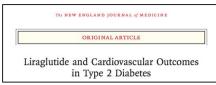
VS

The Chance of Something Happening WITH TREATMENT

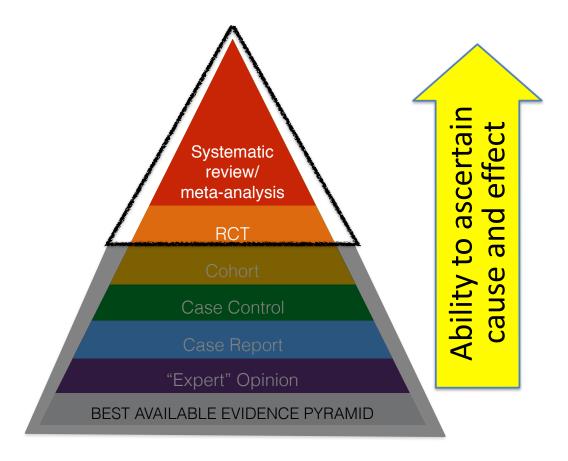
over a period of time

It's really THAT simple

Trials almost never include people exactly like the person in front of you - genetic mongrels


All results from individual trials or meta-analyses are by definition ballpark estimates

PHAR 131/231 OVERALL COURSE OBJECTIVE Develop Your Ability to Assess Health Claims



Need different evidence for different questions

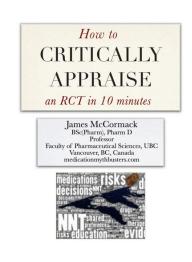
It's a Mindset

SCIENCE: NOT JUST FOR SCIENTISTS

We believe that science is a human endeavour; it's a way to ask questions about the world and test them out. It's not just a list of facts; it's a mindset owned by anyone who approaches the world in an open-minded, sceptical, logical, systematic, empirically-oriented, tentative and curious way. It applies in the natural and social sciences, as well as technology, engineering and mathematics.

EVIDENCE APPRAISAL CONTENT

How To Critically Appraise



an RCT in 10 minutes

http://wiki.ubc.ca/Evidence_Appraisal_Integrated_Activities

Links to a free iBook or pdf of this section

Effects of Intensive Glucose Lowering in Type 2 Diabetes

The Action to Control Cardiovascular Risk in Diabetes Study Group*

ABSTRACT

BACKGROUND

Epidemiologic studies have shown a relationship between glycated hemoglobin levels and cardiovascular events in patients with type 2 diabetes. We investigated whether intensive therapy to target normal glycated hemoglobin levels would reduce cardiovascular events in patients with type 2 diabetes who had either established cardiovascular disease or additional cardiovascular risk factors.

METHOD

In this randomized study, 10,251 patients (mean age, 62.2 years) with a median glycated hemoglobin level of 8.7% were assigned to receive intensive therapy (targeting

cated hemoglobin level of 8.1% were assigned to receive intensive therapy (targeting a glycated hemoglobin level below 6.0%) or standard therapy (targeting a level from 7.0 to 7.9%). Of these patients, 38% were women, and 35% had had a previous car-

diovascular event. The primary outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, or death from cardiovascular causes. The finding of

therapy after a mean of 3.5 years of follow-up.

therapy group (hazard ratio, 1.22; 95% CI, 1.01 to 1.46; P=0.04). Hypoglycemia requiring assistance and weight gain of more than 10 kg were more frequent in the intensive-therapy group (P<0.001).

CONCLUSIONS

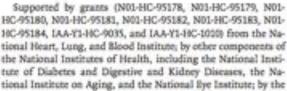
As compared with standard therapy, the use of intensive therapy to target normal glycated hemoglobin levels for 3.5 years increased mortality and did not significantly reduce major cardiovascular events. These findings identify a previously

Let's recap

- Look at the Abstract
- Read the title
- Look at what was studied
- Look at the outcomes
- Read the conclusions

qrandom

All 10,251 patients were randomly assigned


premature death, blindness, kidney failure

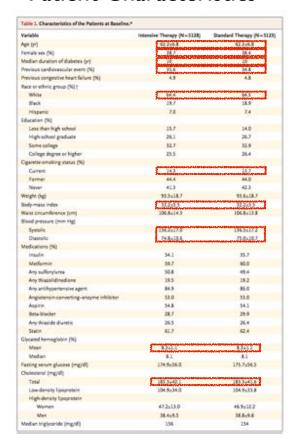
Analyses of primary and secondary outcomes were performed with the use of time-to-event methods according to the intention-to-treat principle, and occurrences of these outcomes in the

of patients within the previous 12 months; 50 patients (0.5%, including 26 patients in the intensive-therapy group and 24 in the standard-therapy group) were lost to follow-up, and 162 patients

tis, King, Takeda, and Sanofi-Aventis, lecture fees from Novartis, and grant support from Novartis, Hamilton Health, and Abbott; Dr. Genuth, receiving consulting fees from Merck, Mannkind, Sanofi-Aventis, and Novartis and lecture fees from Lilly and having an equity interest in Bristol-Myers Squibb; Dr. Grimm, receiving lecture fees from Merck, Pfizer, and Novartis; and Dr. Probstfield, receiving consulting fees from King and grant support from King and Sanofi-Aventis. No other potential conflict of interest relevant to this article was reported.

Primarily funded by the National Institutes of Health

Let's recap


- Randomized
- Blinded
- Allocation concealment
- Intention to treat
- Follow-up
- Conflicts of interest

MUCH OF THE REST OF THE TEXT

- INTRODUCTION
- "MOST" OF THE METHODS
- STATISTICAL TESTS
- DISCUSSION

Patient Characteristics

No "clinical" differences

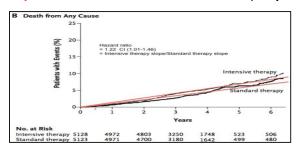
N = 5,100

Age 62 Female 38%

Diabetes 10 years
Previous CV event 35%
White 65%
Smoker 14%
BMI 32
BP 136/75
A1C 8.3%

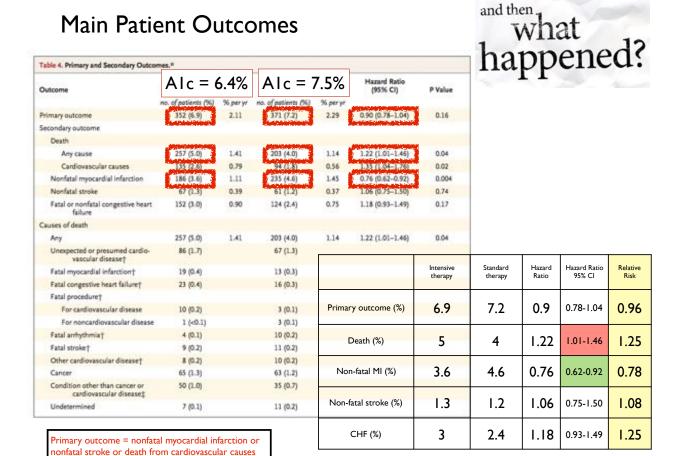
Total Chol 183 or 4.7

Let's recap


- Differences between groups
- Baseline characteristics

Similar but different relatives

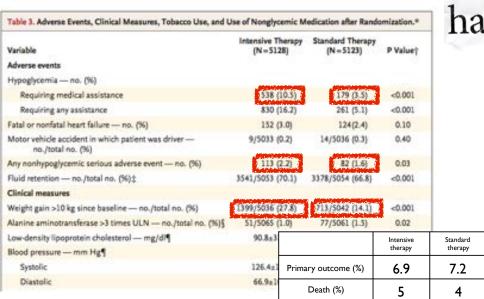
Relative risk/risk ratio (RR) - ratio of two probabilities (%) at one point in time - treatment/control


- eg 8% vs 10% RR = 8/10 = 0.8
- most useful in low probability events

Hazards ratio (HR) - ratio of two hazard rates (slopes) over a time period

Odds ratio (OR) - ratio of two odds (25/1) - typically used in case-control studies - typically the incidence is not known

OR is a reasonable estimate of the RR if a disease is "rare" <~15% but treating an OR as if it were an accurate estimate of the RR will typically overestimate both the likely benefits and harms of treatment



Let's recap

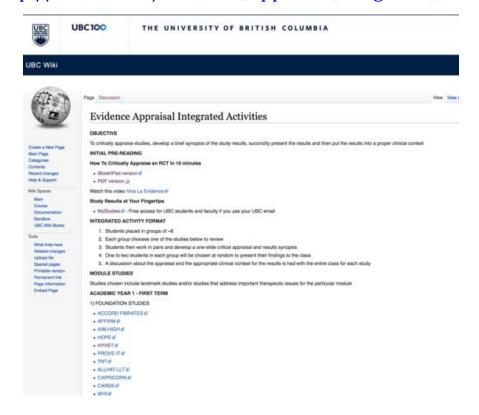
- Primary outcomes
- Other outcomes
- Differences
 - Absolute numbers
 - Relative numbers
 - Confidence intervals

Adverse Events

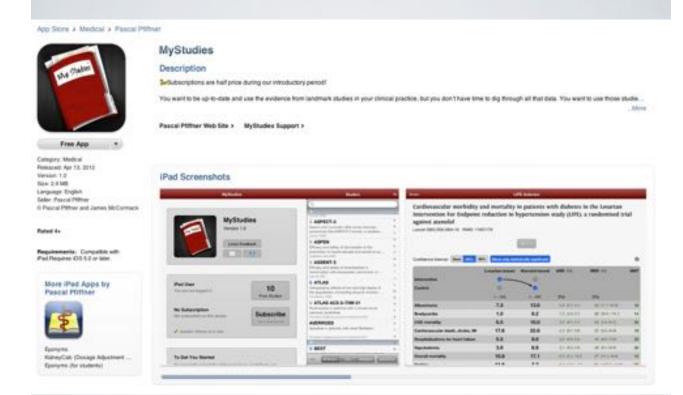
17/3001 (1.3)	0.02			
	Intensive therapy	Standard therapy	Hazard Ratio	Hazard Ratio 95% CI
Primary outcome (%)	6.9	7.2	0.9	0.78-1.04
Death (%)	5	4	1.22	1.01-1.46
Non-fatal MI (%)	3.6	4.6	0.76	0.62-0.92
Non-fatal stroke (%)	1.3	1.2	1.06	0.75-1.50
CHF (%)	3	2.4	1.18	0.93-1.49
Hypoglycemia (%)	10.5	3.5		
Serious adverse event	2.2	1.6		
Weight gain >10kg	27.8	14.1		

Let's recap

- Adverse outcomes
- Any other outcomes
- Differences
 - Absolute numbers
 - Relative numbers
 - Confidence intervals


Randomised
Non-blinded
Allocation concealment?
Intention-to-treat
Follow-up

N=10,251 - 3.5 years

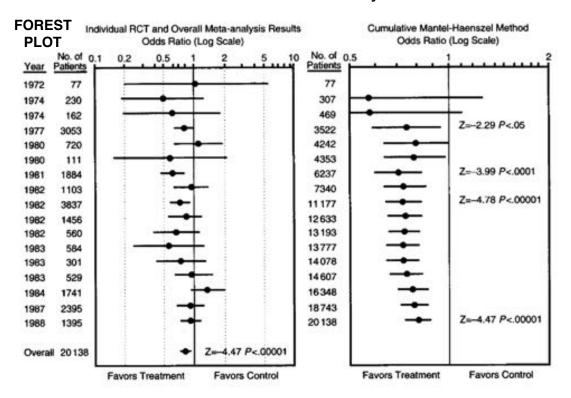

Age 62, Female 38%, Diabetes 10 years, Previous CV event 35%, White 65%, Smoker 14%, BMI 32, BPI36/75, AIC 8.3, Total Chol 183

	Intensive therapy	Standard therapy	Hazard Ratio	Hazard Ratio 95% CI
Primary outcome (%)	6.9	7.2	0.9	0.78-1.04
Death (%)	5	4	1.22	1.01-1.46
Non-fatal MI (%)	3.6	4.6	0.76	0.62-0.92
Non-fatal stroke (%)	1.3	1.2	1.06	0.75-1.50
CHF (%)	3	2.4	1.18	0.93-1.49
Hypoglycemia (%)	10.5	3.5		
Serious adverse event	2.2	1.6		
Weight gain >10kg	27.8	14.1		

http://wiki.ubc.ca/Evidence Appraisal Integrated Activities

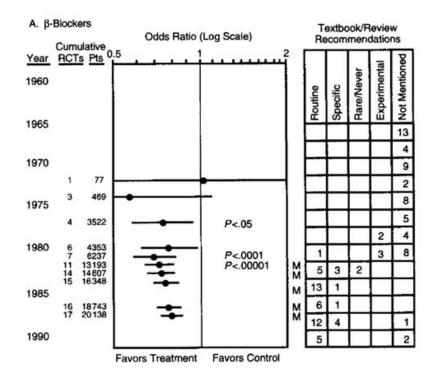
mystudies.org

Meta-Analysis


Meta-Analysis

MA's "started" in 1976

Critics - "An exercise in Mega-Silliness"


"Garbage in = Garbage out"

Effect of beta-blockers on mortality after a heart attack

JAMA 1992;268:240-248

Effect of beta-blockers on mortality after a heart attack

JAMA 1992;268:240-248

Started in 1993

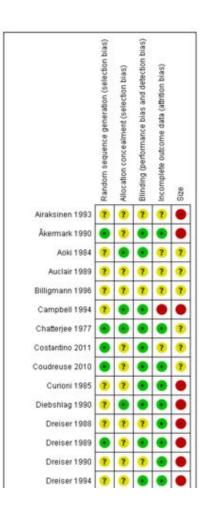
Systematic review of RCTs of a short, inexpensive course of a corticosteroid given to women about to give birth too early.

7 studies

Neonatal death reduced by 31% - RR 0.69 Absolute difference 5%

Number of Cochrane Reviews TOTAL NEW

2016/15	Total reviews	Total protocols	Total reviews and protocols	2016/2015	New reviews	Updated reviews	Withdrawn reviews	Conclusions changed
Issue 1 2016	6471	2460	9201	Issue1 2016	28	31	6	6
Issue 2	6791	2432	9227	Issue2	49	31	10	
Issue 3 2015	6355	2380	8735	Issue2 Issue3 2015 Issue1 Issue0	Ea	ch iss	eviews	
Issue 4	6388	2411	9		25	uem .	dated	
Issue 5	6422	700			ا اب	35 UP	drawn	anged
Issue 6	_	70	8901		· ·	5 With	ions ch	10110
Issue 7		2432	8937	Iss	- (anclus	5	6
Issue 8	6538	2425	8963	Issue	10 C	35	3	11
Issue 9	6583	2432	9017	Issue9	46	51	5	14
Issue 10	6621	2429	9050	Issue10	37	40	9	10
Issue 11	6670	2427	9099	Issue11	49	35	5	10
Issue 12	6715	2426	9143	Issue12	44	35	9	6

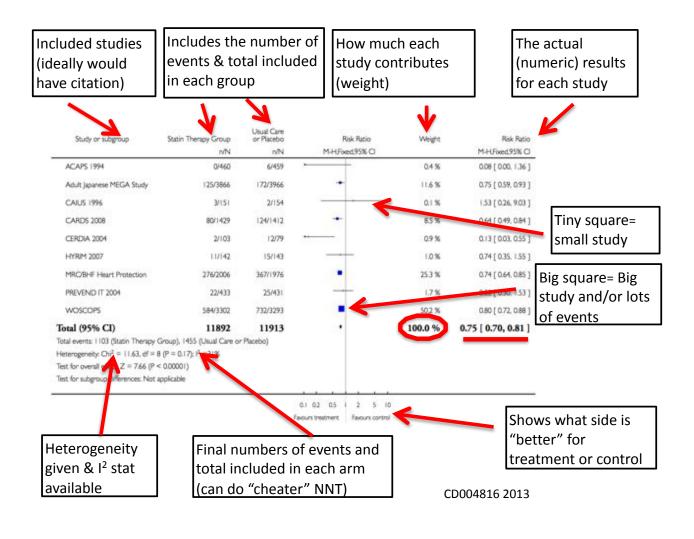

Table of Contents

HEADER
ABSTRACT
PLAIN LANGUAGE SUMMARY
SUMMARY OF FINDINGS FOR THE MAIN COMPARISON
BACKGROUND
OBJECTIVES
METHODS
RESULTS
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
DISCUSSION
AUTHORS' CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES
REFERENCES CHARACTERISTICS OF STUDIES Included and excluded
DATA AND ANALYSES
Analysis 1.1. Comparison 1 Individual NSAID versus placebo, Outcome 1 Clinical success
Analysis 1.2. Comparison 1 Individual NSAID versus placebo, Outcome 2 Local adverse events
Analysis 2.1. Comparison 2 Diclofenac versus placebo (effect of formulation), Outcome 1 Clinical success
Analysis 3.1. Comparison 3 Ibuprofen versus placebo (effect of formulation), Outcome 1 Clinical success
Analysis 4.1. Comparison 4 Ketoprofen versus placebo, Outcome 1 Clinical success.
Analysis 5.1. Comparison 5 All topical NSAIDs versus placebo, Outcome 1 Local adverse events
Analysis 5.2. Comparison 5 All topical NSAIDs versus placebo, Outcome 2 Systemic adverse events
Analysis 5.3. Comparison 5 All topical NSAIDs versus placebo, Outcome 3 Adverse event withdrawals
Analysis 6.1. Comparison 6 Topical NSAID versus active comparator, Outcome 1 Clinical success - topical piroxicam vs
topical indomethacin.
Analysis 6.2. Comparison 6 Topical NSAID versus active comparator, Outcome 2 Local adverse events - topical piroxicam
vs topical indomethacin
APPENDICES
FEEDBACK
WHAT'S NEW
HISTORY
CONTRIBUTIONS OF AUTHORS
DECLARATIONS OF INTEREST
SOURCES OF SUPPORT
DIFFERENCES BETWEEN PROTOCOL AND REVIEW
INTERVITEDAGE

Summary of Findings

Patient or population: adults with strains, sprains, or muscle pull Settings: community Intervention: topical NSAID (topical diciolenac, thuprofen, and ketoprofen gets only shown here for efficacy) Comparison: topical placebo								
Outcomes	Probable outcome with intervention	Probable outcome with comparator	RR, NNT, NNTp, or NNH (95% CI)	No of studies, partici- parts	Quality of the evidence (GRADE)	Comments		
Topical diclofenac gel (as Emulgel) Clinical success (eg 50% reduction in pain)	780 in 1000	200 in 1000	RR 3.4 (2.7 to 55) NNT 1.8 (1.5 to 2.1)	2 studies 314 participants	High	Consistent results in a moderately sized recent studies of high quality		
Topical Buprolen gel Clinical success (eg 50% reduction in pain)	420 in 1000	160 in 1000	RR 2.7 (1.7 to 4.2) NNT 3.9 (2.7 to 6.7)	2 studies 241 participants	Moderate	Modest effect size an numbers of participants		
Topical ketoprofee gel Clinical success (eg 50% reduction in pain)	720 in 1000	330 in 1000	RR 2.2 (1.7 to 2.8) NNT 2.5 (2.0 to 3.4)	5 studies 348 participants	Moderate	Modest effect size and numbers of participants but studies small, with none recent.		
All topical NSAIDs Local adverse events	46 in 1000	50 in 1000	RIR 1.0 (0.80 to 1.2) NNH not calculated	42 studies 6125 participants	High	Large number of studies and participants with con- sistent results		
All topical NSAIDs Systemic adverse events	32 in 1000	35 in 1000	RR 1.0 (0.7 to 1.3) NNH not calculated	38 studies 5372 participants	High	Large number of studies and participants with con- sistent results		
All tepical NSAIOs Withdrawals - adverse events	11 in 1000	11 in 1000	RR 1.0 (0.7 to 1.7) NWH not calculated	42 studies 5790 participants	High	Large number of studies and participants with con- sistent results		

Author's assessment of the risk of bias


Characteristics of Studies

WOSCOPS							
Methods	Randomised trial.	Randomised trial.					
Participants	6595 men with hypercholesterolaemia based in Scotland aged $45-64$ (mean age 55). < $10%$ with clinical evidence of CVD						
Interventions	40 mg pravastatin ven	sus placebo; follow-up 4.9 years.					
Outcomes	Primary outcome: composite of non-fatal MI and CHD death. Single outcomes included total mortality, fatal CVD events, cholesterol, revascularisations, non-fatal MI and CHD death and adverse events						
Notes							
Risk of bias							
Bias	Authors' judgement Support for judgement						
Random sequence generation (selection bias)	Low risk	Blocks of random numbers and treatment assigned randomly					
Allocation concealment (selection bias)	Low risk	All trial personnel remained unaware of the participant's treatment assignment throughout the study					
Blinding (performance bias and detection bias) All outcomes	Low risk	Double-blind: participants and personnel					
Incomplete outcome data (attrition bias) All outcomes	Low risk	ITT used, 30% drop-outs reported					
Selective reporting (reporting bias)	Low risk						
Other bias	Unclear risk	Funded by pharmaceutical industry					

Data and Analyses

Outcome or subgroup title	No. of No. of studies participants		Statistical method	Effect size	
1 Total Mortality	13	48060	Odds Ratio (M-H, Fixed, 95% CI)	0.86 [0.79, 0.94]	
2 Total Number of CHD Events	14	48049	Risk Ratio (M-H, Fixed, 95% CI)	0.73 [0.67, 0.80]	
3 Number of Fatal CHD Events	10	46094	Risk Ratio (M-H, Fixed, 95% CI)	0.82 [0.70, 0.96]	
4 Number of Non-fatal CHD Events	11	40977	Risk Ratio (M-H, Fixed, 95% CI)	0.67 [0.59, 0.76]	
5 Total Number of CVD Events	9	23805	Risk Ratio (M-H, Fixed, 95% CI)	0.75 [0.70, 0.81]	
6 Number of Fatal CVD Events	5	34012	Risk Ratio (M-H, Fixed, 95% CI)	0.83 [0.72, 0.96]	
7 Number of Non-fatal CVD Events	2	8696	Risk Ratio (M-H, Fixed, 95% CI)	0.77 [0.62, 0.96]	
8 Total Number of Stroke Events	10	40295	Risk Ratio (M-H, Fixed, 95% CI)	0.78 [0.68, 0.89]	
9 Number of Fatal Stroke Events	3	27238	Risk Ratio (M-H, Random, 95% CI)	0.63 [0.18, 2.23]	
10 Number of Non-fatal Stroke Events	5	28097	Risk Ratio (M-H, Fixed, 95% CI)	0.69 [0.58, 0.83]	
11 Total Number of Fatal and Non-fatal CHD, CVD and Stroke Events	4	35254	Risk Ratio (M-H, Fixed, 95% CI)	0.65 [0.58, 0.73]	
12 Number of Study Participants who underwent Revascularisation	7	42403	Risk Ratio (M-H, Fixed, 95% CI)	0.62 [0.54, 0.72]	

Mantel-Haenszel - statistical method Random (assumes the studies are different) is more conservative than fixed (assumes trials are the same)

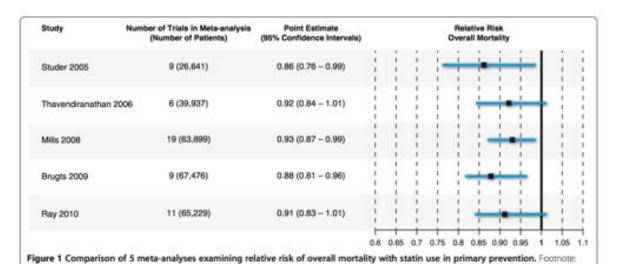
DEBATE Open Access

How confidence intervals become confusion intervals

James McCormack¹, Ben Vandermeer² and G Michael Allan^{3*}

BMC Medical Research Methodology 2013;13:134

Do statins reduce mortality in primary prevention?


Studer et al.: "reduced risks of overall and cardiac mortality" YES

Thavendiranathan et al.: [does not decrease]" overall mortality" NO

Mills et al.: "an important role in preventing all-cause mortality" YES

Brugts et al.: "associated with significantly improved survival" YES

Ray et al.: "did not find evidence for the benefit ... on all-cause mortality" NO

Brugts 2009 point estimate and confidence intervals are odds ratios (not relative risks).

Heterogeneity

If confidence intervals for the results of individual studies have poor overlap, this generally indicates the presence of statistical heterogeneity

Thresholds for the interpretation of I² can be misleading but

0% - no heterogeneity

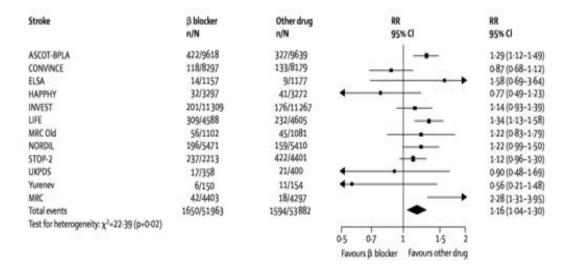
25% - low heterogeneity

50% - moderate heterogeneity

75% - high heterogeneity

Significant heterogeneity

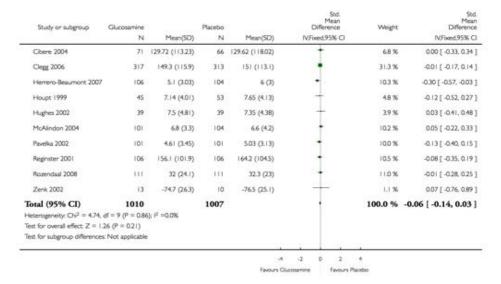
- differences between studies seem to exist
- it may be invalid to pool the results and generate a single summary result
- · look for the variation in the studies
- investigate sources of heterogeneity do subgroup analysis, look at characteristics of the studies
- account for heterogeneity


Statistical significance Yes; Heterogeneity No

Study or subgroup	donepezil		placebo		Mean Difference	Weight	Mean Difference
CS.A.4938760.07041CC	N	Mean(SD)	N	Mean(SD)	IV;Fixed,95% CI	1300300	N/Fixed,95% CI
I donepezil (5mg/d) vs pl	acebo at 12 we	reks	17.77	1000		10. 11.00	
Study 134	49	-2.99 (5.67)	52	-1.89 (5.55)	-	6.1 %	-1.10 [-3.29, 1.09]
Study (6)	124	-3.04 (6.01)	110	-0.74 (5.87)	+	12.5 %	-2.30 [-3.82, -0.78]
Study 201	35	-2.13 (4.91)	36	1.04 (4.68)		5.8 %	-3.17 [-5.40, -0.94]
Study 301/303	141	-2.23 (5.46)	139	0.4 (5.42)	*	17.9 %	-2.63 [-3.90, -1.36]
Study 302	141	-1.28 (5.34)	137	0.84 (5.38)	*	18.3 %	-2.12 [-3.38, -0.86]
Study 304	235	-1.55 (4.75)	242	0.36 (4.82)		39.4 %	-1.91 [-2.77, -1.05]
Subtotal (95% CI)	725		716		•	100.0 %	-2.15 [-2.69, -1.61]
Heterogeneity: Chi ² = 2.5	57, df = 5 (P =	0.77); 12 =0.0%					
Test for overall effect; Z =	7.82 (P < 0.00	0001)					

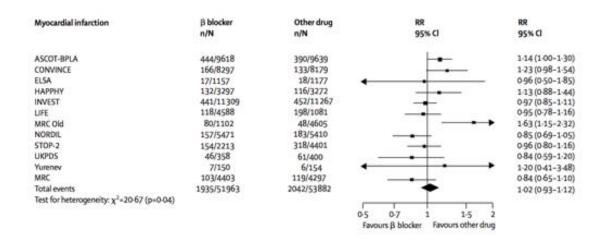
ADAS-cog changes with donepezil in dementia

Cochrane Database Syst Rev. 2006 Jan 25;(1):CD001190.


Statistical significance Yes; Heterogeneity Yes

Beta-blockers vs other drugs in hypertension for stroke

Lancet. 2005 Oct 29-Nov 4;366(9496):1545-53.


Statistical significance No; Heterogeneity No

Glucosamine vs Placebo for OA pain, high quality studies

Cochrane Database Syst Rev. 2005 Apr 18;(2):CD002946.

Statistical significance No; Heterogeneity Yes

Beta-blockers vs other drugs in hypertension for MI

EVIDENCE APPRAISAL WORK BOOK

YOUR ANSWERS WILL INVOLVE NOT ONLY

Numbers
BUT ALSO
Clinical Judgement
AND
Personal opinion

What is in the DM trials?

	Number	Mean Age	Duration of DM	Past CVD	Weight in 2 nd Meta
UKPDS 33 (1998)	3,867 (4209*)	53.2	New	2%	23.9
UKPDS 34 (1998)	753 (4209*)	53.2	New	2%	23.9
ACCORD (2008)	10,251	62.2	8.3	35%	21.5
ADVANCE (2008)	11,140	66	7.5	32%	28.2
VADT (2009)	1791	60.4	11.5	40%	11.9
UGDP (1978)	414	52.7	New	6%	11.8

^{*} The n used in the BMJ meta for UKPDS combined

What is in those Vitamin D trials?

Study	Country	Endpoint	Age
Camargo (2012)	Mongolia	Acute RI	10
Jorde (2012)	Norway	Influenza	63
Laaksi (2010)	Finland	URTI	18-28
Li-Ng (2009)	USA	URI*	59
Manaseki-Holland (2010)	Afghanistan	pneumonia	0-3
Manaseki-Holland (2012)	Afghanistan	pneumonia	0-1
Murdoch (2012)	New Zealand	Colds	47
Urashima (2010)	Japan	Flu	10.2

URI* = 2 or more of fever, cough, productive sputum or change in sputum color and quantity, muscle aches, nausea or vomiting

What is in those Vitamin D trials?

Let's look specifically at Urashima (Am J Clin Nutr 2010;91:1255-60)

	Vitamin D		Plac	ebo	Relative Risk*		
	n (167)	%	n (167)	%			
Influenza A	18	11%	31	19%	0.58 (0.34-0.996)		
Influenza B	39	23%	28	17%	1.39 (0.90-2.15)		
Influenza Like Illness	8	5%	9	5%	-		
Total	65	38.9%	68	40.7%	0.96 (0.73-1.24)		

^{*} Using http://www.hutchon.net/ConfidRR.htm for RR (& CI) estimation