The Risky Business of Risk Factor modification

It's Just a Numbers Game And So Much More

James McCormack BSc (Pharm), PharmD Professor Faculty of Pharmaceutical Sciences University of British Columbia Vancouver, BC, Canada

Objectives

Be able to explain what is meant by the various cardiovascular/fracture endpoints which drug therapy is aimed at improving.

Be able to select and use an appropriate risk estimation tool to help a patient understand their level of risk and chance of benefit.

Be able to conceptualize how this information could be applied to pharmacotherapeutic decisionmaking.

Risk ...

Risk markers - associated with a bad outcome

Risk factors - modifiable?

Risky behaviors - smoking, nutrition, activity

Risk of disease - CVD, MI, strokes, fractures

Risk of treatment - harms, costs

Risk of over diagnosis - inconvenience, labelling, worry

Risk Factors versus Clinical Endpoints

"a risk factor/marker is a variable associated with an increased risk of disease"

Not As Important	Very Important		
blood pressure	symptoms		
cholesterol	heart attacks		
glucose/diabetes	strokes		
bone density	heart failure		
heart rate	death		
CRP	dialysis		
proteinuria	amputation		
family history	fractures		
age	blindness		
gender	revascularization		
race	angina		
FEV1	TIAs		

Conditions requiring risk assessment

The main ones are hypertension, cholesterol, glucose/diabetes, osteoporosis/BMD, atrial fibrillation, cancer

Figure out risk

Then figure out benefit

Include harm and costs and inconvenience

Me are knowledge brokers

"Choice is a gift from the patient to the doctor, not the other way around"

It's all about figuring out

The Chance WITH NO TREATMENT

VS

The Chance WITH TREATMENT

We need minimally disruptive medicine

The burden of treatment for many people with complex, chronic, comorbidities reduces their capacity to collaborate in their care. **Carl May, Victor Montori**, and **Frances Mair** argue that to be effective, care must be less disruptive

BMJ 2009;339:b2803

Risky Adjectives

HOW

low is low

moderate is moderate

high is high

Treatment thresholds are arbitrary

Not based on patient preferences

Not based on cost/benefit

Seem to be primarily emotionally-based

What Will You Do?

You are approximately 50 y/o

You have been diagnosed "properly" with elevated blood pressure

You have tried non-drug measures for 6 months and still your blood pressure remains elevated

QUESTION

ABOVE what systolic blood pressure would YOU take a drug every day for the next 5 years?

What is your "scary" number?

Numbers VS NUMBERS

Risk factor numbers

VS

CVD

Risk/benefit/harm

Misguided beliefs

Patients believe CVD "prevention" drugs produce a 70% absolute benefit over 5 years when at most only ~ 20-30% benefit is possible over a lifetime

Risk of future illness CVD risk/benefit

(most people don't benefit despite a lifetime of treatment)

Assume a person's lifetime risk of CVD is that of a male with two CVD risk factors - roughly 50% (NEJM 2012;366:321-9)

Assume that with multiple risk factor modification we can reduce that risk relatively by 60% (VERY optimistic)

Risk goes from 50% → 20%

30% of individuals BENEFIT

70% DO NOT despite a LIFETIME of treatment

20 "NEGATIVE" STUDIES IN A ROW

LIPIDS

AIM-HIGH, HPS2-THRIVE (niacin) **ACCORD** (fibrates) dalOUTCOMES (dalcetredit STABILITY (daraplad irbesartan/afib) ENDO (rimonabant) **awerîn**a VISTA-16 (varespladib) N (insulin)

SAVOR-TIMI 53 (saxagliptin) **EXAMINE** (alogliptin) ALECARDIO (aleglitazar)

182,000+ patients

Measure - BP (SBP) - Chol?

Risk of cardiovascular disease

Patient decision

Treatment
Thiazides
ACE inhibitors
Statins etc

EVIDENCE FOR, AND MAGNITUDE OF, THE reduction in cardiovascular outcomes

Side effects

Repeat BP and chol??

ı

Reevaluate need

Relative Risk and Absolute Benefit - recap

Baseline Risk of a heart attack = 50% over 5 years

RR - Relative benefit = 0.8 or 20% reduction

With Treatment = 40%

Absolute difference = 10%

NNT = 10

Baseline Risk of a stroke = 2% per year

RR - Relative benefit = 0.25 or 75% reduction

With Treatment = 0.5%

Absolute difference = 1.5%

NNT = 67

Baseline risk of cancer = 10% lifetime

RR - Relative harm = 2.5 or 150% increase

With Treatment = 25%

Absolute difference = 15%

NNH = 7

Evidence-based risk communication

"There is likely no single best method of communicating probabilities to patients but rather several good options with some better suited to certain risk scenarios."

Recommended approaches

GENERAL SUGGESTIONS - these are "relative" use percentages or natural frequencies(numerator/denominator) use absolute terms add bar graphs or icon arrays use incremental risk format with icon arrays in the same array

avoid use of NNTs

if use relative risks add baseline risks

Ann Intern Med 2014;161:270-80

Cardiovascular Endpoints

Risk of What and over How Long

WHAT

CVD is cardiovascular disease

Typically = CHD + cerebrovascular

CHD = coronary heart disease = fatal and nonfatal MIs and sometimes angina

Cerebrovascular disease = fatal and non-fatal strokes - and sometimes TIAs

CVD sometimes includes other conditions - heart failure, peripheral vascular disease

HOW LONG - 5 or 10 years

How accurately can we predict risk?

J Cardiovasc Risk 2002;9:183-90

"Non-traditional" Risk Factors

C-reactive protein "There is at present no ankle-brachial index leukocyte count fasting blood glucose periodontal disease carotid intima-media thickness coronary artery calcification score on CT homocysteine lipoprotein(a)

place for adding additional risk factors to the present risk prediction models" Circulation 2013;127:1948-56

USPSTF. Ann Intern Med 2009;151:474-82

Oswald Chesterfield Cobblepot AKA The Penguin 60 years old Loves birds Lives a luxurious lifestyle Relatively inactive PMH - Conduct disorder Smoker A1c 8 BP 150/90 mm/Hg Total cholesterol 6 (240) HDL 1 (40)

10 year risk

Framingham (HA, angina, HF, stroke, int claud) = 53% ASCVD (HA, stroke) = 41%

Bruce Banner AKA The Hulk Age 45 Scientist Easily agitated, and emotionally withdrawn SBP 160 mm/Hg Non-smoker Non-diabetic Total cholesterol 4.4 (180) HDL 1.5 (60)

AM testosterone: 330 nmol/L (N 6.7-29) Urine catechol: +ve (no urine found)

10 year risk

Framingham (HA, angina, HF, stroke, int claud) = 8%

 $\mathsf{ASCVD} \; (\mathsf{HA}, \; \mathsf{stroke}) = 2\%$

Wonder Woman Age 40 (OK she ages well) BP 120/70 mmHg Total cholesterol 6.8(270) HDL 1.6 (65) LDL 5.0 (200) Trigs 1 Diet mostly caiman and anaconda (rich in cholesterol) Non-diabetic Not a smoker (but still smokin') PMH: Charles Bonnet Syndrome (suffers from visual hallucinations that are pleasant: in this case, a jet) Wears bracelets as a defence but otherwise dresses more than appropriately!

10 year risk

Framingham (HA, angina, HF, stroke, int claud) = 2%

ASCVD (HA, stroke) = 1%

S.M.+W.W 45 years old Diabetics A1c 8.5 SBP 140 mm/Hg Non smokers Total cholesterol 4.5 (180) HDL 1.2 (55)

10 year risk

Framingham (HA, angina, HF, stroke, int claud) = 12%/12% ASCVD (HA, stroke) = 4%/2%

Superman
Age 74
Still quite physically active
BP 150/90 mmHg
Total cholesterol 5.2
HDL 1.4
BMI 35
A1C 15 = 5.4 on Krypton so OK

A1C 15 = 5.4 on Krypton so OK Prostate exam: very hard throughout ... almost steel-like?

10 year risk

 $Framingham \ (\text{HA, angina, HF, stroke, int claud}) = 33\%$

ASCVD (HA, stroke) = 29%

Risks over short time periods

Assume a 5% (5/100) reduction in CVD over 5 years

- ~ 1% (1/100) reduction over one year
- ~ 0.1% (1/1000) per month
- $\sim 0.02 (1/5000)$ per week

10 year risk
Framingham (HA, angina,
HF, stroke, int claud) = 53%
ASCVD (HA, stroke) = 41%

Smoker - stop ~15% absolute A1c 8 ? BP 150/90 mm/Hg - 30-50% RR Total cholesterol 6 (240) - 25% RR HDL 1 (40)

10 year risk
Framingham (HA, angina,
HF, stroke, int claud) = 8%
ASCVD (HA, stroke) = 2%

SBP 160 mm/Hg - 30% RR
Non-smoker
Non-diabetic
Total cholesterol 4.4 (180) -25% RR
HDL 1.5 (60)

10 year risk
Framingham (HA, angina,
HF, stroke, int claud) = 2%
ASCVD (HA, stroke) = 1%

Smokin' - NO TREATMENT
BP 120/70 mmHg - 0%
Total cholesterol 6.8(270) - 25% RR
HDL 1.6 (65)
LDL 5.0 (200)

AGE	SBP	WOI	MEN		MEN		
65-74	171-80						
	161-70						
	151-160						
	141-150						
	131-140						
	121-130						
		· 					
55-64	171-80						
	161-70						
	151-160						
	141-150						
	131-140						
	121-130						
	T						
45-54	171-80						
	161-70						
	151-160						
	141-150						
	131-140						
	121-130						
		· 					
35-44	171-80						
	161-70						
	151-160						
	141-150						
	131-140						
	121-130						
		5200	-	Т			

A) "normal" BMI - 20-25

≃ 5-year CVD¹						
risk (%) ²						
	>30					
	20-30					
	10-20					
	5-10					
	<5%					

Smoking or diabetes approx. doubles the risk

1.CVD = death, MI, stroke, CHF, and coronary revascularisation including CABG and PTCA 2.1/2-2/3 are hard endpoints - fatal/nonfatal MI or stroke

Lancet 2008;371:923-31

B) "overweight" BMI 25-30

C) "obese" BMI - >30

Baseline 10-year risk (%) of CVD, blindness, amputation and ESRD(lifetime) based on A1c (1-3)

(all numbers are ballpark approximations but provide at least a starting point for discussion)

- does not imply a reduction in risk as most individual studies of medications that lower glucose don't show reductions in risk of CVD endpoints a meta-analysis suggests glucose control reduces major CVD by 5%(0.95RR) Lancet Diabetes Endocrine 2015;3:356–66
 hypoglycaemia risks vary between medications but are roughly 1-2%/year (severe) and 5-10%/year (overall)
- 1) CVD from UKPDS risk engine calculator v3.0b2 unreleased beta 2012
- 2) Amputation/blindness from http://www.qdiabetes.org/amputation-blindness/index.php 2015
- 3) ESRD from Ann Int Med 1997;127:788-95 lifetime risk and authors didn't break down numbers based on gender or other risk factors

ALL LOWER GLUCOSE							
RED - no effect on clinical outcomes	Key RCTs (pat	ients/years)	MA (# of studies)				
METFORMIN - Glucophage, Glumetza, generic	700/11 7%		13				
SULFONLYUREAS - Gliclazide (Diamicron, generic), Glimepiride (Amaryl), Glyburide (Diabeta, Euglucon, generic)	4,000/10	UKPDS COMBO	4-11		3%		
INSULIN	12,000/6 4,000/10	12,000/6 None done					
DPP4s - Sitagliptin (Januvia), Saxagliptin (Onglyza), Linagliptin (Trajenta), Alogliptin (Nesina)	5,000/1.5 16,000/2 1,500/2	vs glimiperide	None done				
GLITAZONES - Pioglitazone (Actos), Rosiglitazone (Avandia)	4,400/4 5,200/3	?	42	?CHF harm	?	?	?
GLPs - Exenatide (Byetta) Liraglutide (Victoza), Dulaglutide (Trulicity)	? - not studied		?		?	?	?
MEGLITINIDES - Nateglinide (Starlix), Repaglinide (GlucoNorm)	? - not studied		?		?	?	?
SGLT2 - Canagliflozin (Invokana), Dapagliflozin (Farxiga), Empagliflozin (Jardiance)	Empag (7000/3) 1.6%		?		?	?	?
Tight control	10,000/3.5 1,800/5.5 11,000/5	?Mortality harm	3		2%	2%	2%

T2DM - Lifetime Treatment Benefits - absolute risk reduction

	Age	ESRD	Vision Loss	Amputation	First MI
	45	6.5	2.1	2.7	2.6
Metformin	55	4.2	1.6	2.2	4.0
at diagnosis	65	2.1	1.0	1.5	3.7
	75	0.7	0.5	8.0	2.7
	45	1.3	0.4	0.4	1.0
Switch to Insulin	55	0.7	0.2	0.3	8.0
after 10 years	65	0.3	0.1	0.2	0.6
	75	0.1	0	0.1	0.3

UKPDS - most optimistic

JAMA Intern Med. doi:10.1001/jamainternmed.2014.2894

10 mmHg reduction in SBP

	NNT over ten years
Mortality	32
CVD events	26
CHD events	55
Stroke events	25
Retinopathy	45
Albuminuria	

JAMA 2015;313(6):603-615. doi:10.1001/jama.2014.18574

Relative risk reductions with different interventions in DM2

	Treat BP	Treat Lipid	Treat Sugar
CVD events	~ 50%	~20-25%	~ 12.5%
Mortality	16%	8%	NSS

Diabetes Care 2010;33(1): S11-61, Ann Intern Med 2008;148:846-54, Lancet 2009;373:1765–72, Lancet 2008; 371:117–25, Ann Intern Med 2003;138:587-92

Afib Stroke Endpoints

Age 76
A fib
150/70 mmHg
No CHF
No Prev stroke/TIA

No diabetes

SPARC - Stroke Prevention in Atrial Fibrillation Risk Tool

for estimating risk of stroke and benefits & risks of antithrombotic therapy in patients with chronic atrial fibrillation

references/notes version 7, January 2015 Developed by Peter Loewen, ACPR, Pharm.D., FCSHP peter.loewen@ubc.ca

	8. N. T.	PERCENT PER YEAR						
	St	Stroke / Embolism				Major Bleeding		
THERAPY	CHADS2	CHADS2 CHA2DS2-VASc		Pop.Avg.		HAS- BLED		
NO THERAPY	3.6%		4.3%			0.6%		
ASPIRIN	2.8%		3.4%			1.1%		
ASPIRIN+CLOP	2.0%		2.4%			3.8%		
WARFARIN	1.2%		1.4%			3.8%	2.2%	
DABIGATRAN 110	1.2%		1.4%			3.0%	1.8%	
DABIGATRAN 150	0.8%		0.9%			3.8%	2,2%	
RIVAROXABAN	1.2%		1.4%			3.8%	2.2%	
APIXABAN	0.9%		1.1%			2.6%	1.5%	
EDOXABAN 30	1.2%		1.4%			1.8%	1.0%	
EDOXABAN 60	1.2% RIVAROXABAN	0.4%	1.4%	3.8%	1.2%	3.0%	1.8%	
	APIXABAN EDOXABAN 30	0.3%	0.2%	2.6% 1.8%	0.8%			
<u> </u>	EDOXABAN 60	0.4%	0.2%	3.0%	1.0%			

percent per year

http://www.sparctool.com

An easy A fib table

	Patient's A	Difference in benefit		
CHADS ₂ Score	No therapy	ASA	OAC	between ASA and OAC
0	1.9	1.5	0.6	0.9
1	2.8	2.2	0.9	1.3
2	4	3.1	1.3	1.8
3	5.9	4.6	1.9	2.7
4	8.5	6.6	2.8	3.8
5	18	14	6	8

http://www.sparctool.com

An even easier A fib table

	Patient's -	Difference in benefit		
CHADS ₂ Score	No therapy	ASA	OAC	between ASA and OAC
0	2	1.5	0.5	~1
1	3	2.5	1	~1.5
2	4	3	1	~2
3	6	5	2	~3
4	9	7	3	~4
5	18	14	6	~8